
Plugin Architecture Presentation https://docs.google.com/PresentationView?docID=dcggz...

1 of 9 10/11/2007 10:19 AM

Plugin Architecture

Institute of Systems Biology
Seattle, WA

Introduction
Hector Rovira
Senior Software Developer and Technical Architect
MITS, Inc - Advanced Reporting and Business
Intelligence

Current Project: MITS Report 2.0
- what is MITS Report?
- asynchronous extractions from relational databases
- connection plugins to access different database
vendors
- UI plugins enable separate releases of new features

Software Toolkit: Java, Spring, Maven2, Ant, Web2.0,
AOP, Asynchronous Messaging, Relational Databases,
Hibernate, SQL, JDBC, JSP/Servlets, XML, Web
Services JUnit etc

Plugin Architecture Presentation https://docs.google.com/PresentationView?docID=dcggz...

2 of 9 10/11/2007 10:19 AM

Goals
- Extension framework for core application functionality

- Improve speed of feature development and delivery

- Ability to grow the core application as popular plugins
are generalized for community use

- Improved software quality as smaller components can
be tested in isolation

- Enhance popularity of the overall application
(renewed excitement as plugins come online)

- Involve community in the development effort

Challenges
- Clear Upgrade Path

allow plugins to work seamlessly with any version of the core
application within a major release

- Ease of Integration
developers should be able to understand the Core Plugin APIs,
provide implementations to satisfy their needs, integrate and
test against the core application quickly and intuitively

- Avoid Conflicts Between Plugins
plugins should be able to coexist, cooperate and work in the
same transaction without affecting each other's processes

- Resource Management
plugins should delegate to the core the responsibility of
managing threads, connections, pools, files, etc...

Plugin Architecture Presentation https://docs.google.com/PresentationView?docID=dcggz...

3 of 9 10/11/2007 10:19 AM

Critical Design Principles
- Separation Of Concerns

- Inversion of Control
 (and Dependency Inversion Principle)

- Dependency Injection Pattern

- Composition vs Inheritance

Separation of Concerns
Goal is to design systems so that functions can be optimized
independently of other functions, so that failure of one function does not
cause other functions to fail, and in general to make it easier to
understand, design and manage complex interdependent systems

A concern is a single piece of interest or focus in a
program

AOP addresses cross-cutting concerns:
transactions
access control
monitoring (performance, activity, audits)
context control (hibernate)

Some implementation guidelines:
consider variety of imports in the class
how difficult is it to name the class
does the class implement a functional interface

Plugin Architecture Presentation https://docs.google.com/PresentationView?docID=dcggz...

4 of 9 10/11/2007 10:19 AM

Inversion of Control
One important characteristic of a framework is that the methods defined
by the user to tailor the framework will often be called from within the
framework itself, rather than from the user's application code. The
framework often plays the role of the main program in coordinating and
sequencing application activity. This inversion of control gives
frameworks the power to serve as extensible skeletons. The
methods supplied by the user tailor the generic algorithms defined in
the framework for a particular application.
--Ralph Johnson and Brian Foote

Dependency Inversion Principle

The Dependency Inversion Principle has been proposed by Robert C.
Martin. It states that:

High level modules should not depend upon low level
modules. Both should depend upon abstractions.
Abstractions should not depend upon details. Details
should depend upon abstractions.

This principle seeks to "invert" the conventional notion that high level
modules in software should depend upon the lower level modules. The
principle states that high level or low level modules should not depend
upon each other, instead they should depend upon abstractions.

Dependency Injection Pattern
- Declare dependencies on interfaces

- Promotes loosely coupled and testable objects

- Facilitates separation of concerns

- Easier to introduce aspects

- Individual components are easily testable, as mock
objects can be injected as dependencies

- Variety of frameworks to instantiate and inject
dependencies

- Injection Styles: Constructor, Setter and Interface

Plugin Architecture Presentation https://docs.google.com/PresentationView?docID=dcggz...

5 of 9 10/11/2007 10:19 AM

Composition vs Inheritance
Composition
- Functionality is provided at
runtime
- Outsourcing concerns
- Disparate types can reuse
logic
- Stronger encapsulation
- Easier to test and replace code
- Easier to find Generic cases

- Components may be too
granular
- Code is not as easy to
understand or navigate

Inheritance
- Easy to reuse functionality
- Abstracts caller from subclass
- Logic is less abstract

- Breaks encapsulation, child
must understand inner
workings of parent
- Superclass interface is fragile
- Tends to promote rigid
functional hierarchies
- Couples data and functionality

Samples
MyService1 - example of a class with many concerns

Inheritance Solution
MyAbstractService - refactors common functionality

MyService2 - extends from MyAbstractService and processes
ResultSet

Composition Solution
MyService3 - injected with JdbcTemplate (contains

DataSource, handles all database connectivity), instantiates

ResultSetExtractor and owns sql statement

MyService4 - delegates instantiation and sql statement (may be
too granular)
MyService5 - more practical implementation

isbSamples.xml - contains dependency injection samples
All sample code found at http://isbsamples.googlecode.com/svn/trunk

Plugin Architecture Presentation https://docs.google.com/PresentationView?docID=dcggz...

6 of 9 10/11/2007 10:19 AM

Composition Case Class
Diagram

Integration Point Design
- Integration Points

- Plugin Design

- Core API Dependencies

- Testing
Core should offer testing modules, frameworks and guidance
Plugin classes can be injected with mock objects for unit tests
Plugin Certification

Plugin Architecture Presentation https://docs.google.com/PresentationView?docID=dcggz...

7 of 9 10/11/2007 10:19 AM

Integration Points
Core application can define a variety of integration
points in which plugins can participate, such as:

Menu Items (offered in view, coupled with actions or events)
Service Registry (plugins can register their impls)
Event Listeners
View Extensions (plugins can decorate UI elements)
Workflow Actions (asynchronous)
State Transitions

Sample Plugin Integration
menu item is registered in object selection context menu
action and selected objects forwarded to registered service
service analyses objects and annotates page context
view decorator translates annotations into display options
application renders page according to instructions

Plugin Design Guidelines
A Plugin should be an artifact containing

a number of classes
resources - property files, mappings, content
assembly and deployment instructions
versioned dependencies on components and APIs

Plugin classes should:
only address a single concern (react to an action or event,
provide view instructions, implement a service)
implement a single interface defined by an Integration Point in
the core application
define their required dependencies and assume that these will be
satisfied at runtime
allow core to handle all cross-cutting concerns

Plugin Architecture Presentation https://docs.google.com/PresentationView?docID=dcggz...

8 of 9 10/11/2007 10:19 AM

Core API Dependencies
Plugins should depend on core API to extract
information from the context of a request or event

public class DeleteObjectAction<T> implements RequestAction
{
 private PersistenceService<T> persistenceService;
 private ObjectProvider<HttpServletRequest, T>
objectProvider;

 public void processRequest(HttpServletRequest request) {
 T object =
objectProvider.getObjectFromRequest(request);
 persistenceService.delete(object);

 }
}

Design and Development Processes
Long Term

Project Plan - major release schedules, resource allocation
Estimates - high level view of effort (days, months, weeks)
Requirements Gathering

gain a clear view of use cases
write and organize feature cards

Distributed Collaborations - plan communication frequency
System and Acceptance Testing

Short Term
Iteration Plan - several minor releases planned in advance
Estimates effort in 1/2 day increments summarizing effort in
each layer of the application, including unit tests
Requirements - detail use case and identify corner cases
Enforce Build Discipline
Unit, Integration and Performance Testing

Plugin Architecture Presentation https://docs.google.com/PresentationView?docID=dcggz...

9 of 9 10/11/2007 10:19 AM

Recommended Technologies
Maven 2.0

Provides a standard way to build projects, a clear definition of what the project
consisted of, an easy way to publish project information and a way to share artifacts
across projects.

makes the build process easy
coherent site of project information
consistent usage across all projects means no ramp up time for new developers coming
onto a project
superior dependency management
a large and growing repository of libraries and metadata to use out of the box, and
arrangements in place with the largest Open Source projects for real-time availability of
their latest releases
release management, distribution publication and source control integration

Spring Framework
Wide ranging framework for enterprise Java development. Includes abstraction layers
for transactions, persistence frameworks, web application development and JDBC.

OSGi
Allow applications to be constructed from small, reusable and collaborative
components... can be composed into an application and deployed. Provides the
functions to change the composition dynamically on the device of a variety of
networks, without requiring restarts. To minimize and manage coupling, provides a
service-oriented architecture that enables components to dynamically discover each
other for collaboration.

References and Useful Links

Martin Fowler Article on Dependency Injection

Dependency Inversion Principle

Sample Code

OSGI Technology

