Differences between revisions 43 and 123 (spanning 80 versions)
Revision 43 as of 2013-01-25 21:43:56
Size: 44526
Comment:
Revision 123 as of 2015-11-02 19:32:58
Size: 47627
Comment: Updates for v3.3 from the beginning to "Introduction to the Style interface"
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
== What is a Visual Style? ==
One of Cytoscape's strengths in network visualization is the ability to allow users to encode any table data (name, type, degree, weight, expression data, etc.) as a Visual Property (such as color, size of node, transparency, or font type). A set of these encoded or mapped table data sets is called a '''''Visual Style''''' and can be created or edited using the Cytoscape '''''!VizMapper'''''. With the !VizMapper, the visual appearance of your network is easily customized. For example, you can:

 * Specify a default color and shape for all nodes.
  . {{attachment:DefaultColorAndShape.png}}

 * Set node sizes based on the degree of connectivity of the nodes. You can visually see the hub of a network...
## page was renamed from Cytoscape_3/UserManual/Visual_Styles
== What are Styles? ==

One of Cytoscape's strengths in network visualization is the ability to allow users to encode any table data (name, type, degree, weight, expression data, etc.) as a property (such as color, size of node, transparency, or font type) of the network. A set of these encoded or mapped table data sets is called a '''Style''' and can be created or edited in the '''Style''' panel of the '''Control Panel'''. In this interface, the appearance of your network is easily customized. For example, you can:

'''Specify a default color and shape for all nodes.'''
  . {{attachment:NodeShape.png}}

'''Set node sizes based on the degree of connectivity of the nodes. You can visually see the hub of a network...'''
Line 10: Line 12:
 * ...or, set the font size of the node labels instead. '''...or, set the font size of the node labels instead.'''
Line 13: Line 15:
 * Visualize gene expression data along a color gradient. '''Visualize gene expression data along a color gradient.'''
Line 16: Line 18:
 * Encode specific physical entities as different node shapes. '''Encode specific physical entities as different node shapes.'''
Line 19: Line 21:
 * Use specific line types to indicate different types of interactions. '''Use specific line types to indicate different types of interactions.'''
Line 22: Line 24:
 * Control edge transparency (opacity) using edge weights. '''Control edge transparency (opacity) using edge weights.'''
Line 25: Line 27:
 * Control multiple edge visual properties using edge score. '''Control multiple edge properties using edge score.'''
Line 28: Line 30:
 * Browse extremely-dense networks by controlling the opacity of nodes. '''Browse extremely-dense networks by controlling the opacity of nodes.'''
Line 31: Line 33:
 * Show highly-connected region by edge bundling and opacity. '''Show highly-connected region by edge bundling and opacity.'''
Line 34: Line 36:
 * Add photo/image/graphics on top of nodes. '''Add photo/image/graphics on top of nodes.'''
Line 37: Line 39:
Cytoscape 3 has several sample Visual Styles. You can try those to examine how Visual Styles change the appearence of a network. The following is a list of network views based upon sample styles applied to the ''galFiltered.sif'' network :
Cytoscape 3 has several sample styles. Below are a few examples of these applied to the ''galFiltered.sif'' network :
Line 41: Line 44:
!VizMapper is located in a tab on the Control Panel at the left-hand side of the screen.

== Introduction to the VizMapper User Interface ==
There are two main control panels in the !VizMapper:

 1. Main Panel
  . {{attachment:VizMapperMainPanel.png}}

  * This panel allows you to create/delete/view/switch between different visual styles using the Current Visual Style options. The Visual Mapping Browser at the bottom displays the mapping details for a given visual style and is used to edit these details as well.

 1. Default Appearance Editor
  . {{attachment:DefaultEditorPanel.png}}

  * Clicking on the section labelled "Defaults" on the Main Panel will bring up the Default Appearance Editor, which allows you to visually edit the default appearance of nodes and edges for the selected visual style.

These editors will be discussed in further detail below.

== Introduction to Visual Styles ==
The Cytoscape distribution includes several predefined visual styles to get you started. To examine these styles, try out the following example:
== Introduction to the Style interface ==
The '''Style''' interface is located under the '''Style''' panel of the '''Control Panel'''.
  . {{attachment:StylesInterface.png}}

This interface allows you to create/delete/view/switch between different styles using the Current Style options. The panel displays the mapping details for a given style and is used to edit these details as well.

 * At the top of the interface, there is a drop-down menu for selecting a pre-defined style. There is also an '''Options''' drop-down with options to rename, remove, create and copy a Style, and an option to create a legend for the selected Style.
 * The main area of the interface is composed of three tabs, for Node, Edge and Network.
 * Each tab contains a list of properties relevant to the current style. At the top of the list a '''Properties''' drop-down allows you to add additional properties to the list.
 * Each property entry in the list has 3 columns:
   * The '''Default Value''' shows just that, the default value for the property. Clicking on the '''Default Value''' column for any property allows you to change the default value.
   * '''Mapping''' displays the type of mapping currently in use for the property. Clicking on the '''Mapping''' column for any property expands the property entry to show the interface for editing the mapping. Details on the mapping types provided [[#mappers|here]].
   * '''Bypass''' displays any style bypass for a selected node or edge. Note that a node/edge or subset of nodes/edges must be selected to activate the '''Bypass''' column. Clicking on the '''Bypass''' column for selected node(s)/edge(s) allows you to enter a bypass for that property for selected node(s)/edge(s).

The '''Default Value''' is used when no mapping is defined for a property, or for nodes/edges not covered by a mapping for a particular property. If a '''Mapping''' is defined for a property, this defines the style for all or a subset of nodes/edges, depending on how the mapping is defined. A '''Bypass''' on a specific set of nodes/edges will bypass and override both the default value and defined mapping.

== Introduction to Style ==
The Cytoscape distribution includes several predefined styles to get you started. To examine a few styles, try out the following example:
Line 63: Line 65:
 * Load a sample session file: From the main menu, select '''''File → Open''''', and select the file ''sampleData/galFiltered.cys''.

 * The session file includes a network, some annotations, and sample visual styles. By default, the '''Sample for galFiltered''' style is selected. Gene expression values for each node are colored along a color gradient between red and green (where red represents a low expression ratio and green represents a high expression ratio, using thresholds set for the gal4RGexp experiment bundled with Cytoscape in the ''sampleData/galExpData.csv'' file).  Also, node size is mapped to the degree of the node (number of edges connected to the node) and you can see the hubs of the network as larger nodes.  See the sample screenshot below: {{attachment:galFilteredSessionDefault.png}}

'''Step 2. Switch between different Visual Styles'''

You can change visual styles by making a selection from the Current Visual Style dropdown list (found at the top of the !VizMapper Main Panel).

For example, if you select '''Sample1''', a new visual style will be applied to your network, and you will see a white background and round blue nodes. If  you zoom in closer, you can see that protein-DNA interactions (specified with the label "pd") are drawn with dashed edges, whereas protein-protein interactions (specified with the label "pp") are drawn with solid edges (see sample screenshot below).
 * Load a sample session file: From the main menu, select '''File → Open...''', and select the file ''sampleData/galFiltered.cys''.

 * The session file includes a network, some annotations, and sample styles. By default, the style '''galFiltered Style''' is selected. Gene expression values for each node are colored along a color gradient between blue and yellow (where blue represents a low expression ratio and yellow represents a high expression ratio, using thresholds set for the '''gal1RGexp''' experiment bundled with Cytoscape in the ''sampleData/galExpData.csv'' file). Also, node size is mapped to the degree of the node (number of edges connected to the node) and you can see the hubs of the network as larger nodes. See the sample screenshot below:    . {{attachment:galFilteredSessionDefault.png}}

'''Step 2. Switch between different styles'''

You can change the style by making a selection from the '''Current Style''' drop-down list, found at the top of the '''Style''' panel.

For example, if you select '''Sample1''', a new style will be applied to your network, and you will see a white background and round blue nodes. If you zoom in closer, you can see that protein-DNA interactions (specified with the label "pd") are drawn with dashed edges, whereas protein-protein interactions (specified with the label "pp") are drawn with solid edges (see sample screenshot below).
Line 79: Line 83:
This Visual Style does not have mappings except node/edge labels, but you can modify the network graphics by editing ''Default View''.

Additional sample styles are available in the ''sampleStyles.props'' file in the ''sampleData'' directory. You can import the sample file from '''''File → Import → Vizmap File...'''''

== Visual Attributes, Graph Attributes and Visual Mappers ==
The Cytoscape !VizMapper uses three core concepts:

 * A ''visual attribute'' is any visual setting that can be applied to your network. For example, you can change all nodes from circles to squares by changing the node shape visual attribute.
 * A ''network attribute'' is any data attribute associated with a node or an edge. For example, each edge in a network may be associated with a label, such as “pd” (protein-DNA interactions), or “pp” (protein-protein interactions).
 * A ''visual mapper'' maps network attributes to visual attributes. For example, a visual mapper can map all protein-DNA interactions to the color blue, and all protein-protein interactions to the color red.

Cytoscape allows a wide variety of visual attributes to be controlled. These are summarized in the tables below.
||'''Visual Attributes Associated with Nodes''' ||'''Description''' ||
||''Node Shape'' ||The shape of the node. ||
||''Node Fill Color'' ||The color of the node. ||
||''Node Selected Paint'' ||The color of the node when selected. ||
||''Node Transparency'' ||The opacity of the color of the node. Zero means totally transparent, and 255 is most opaque.||
||''Node Border Paint'' ||The color of the border of the node. ||
||''Node Border Transparency'' ||The opacity of the color of the border of the node. Allows for transparency. ||
||''Node Border Line Type'' ||The type of line used for the border of the node. ||
||''Node Border Width'' ||The width of the node border. ||
||''Node Label Font Face'' ||The font used for the node label. ||
||''Node Label Font Size'' ||The size of the font used for the node label. ||
||''Node Label'' ||The text used for the node label. ||
||''Node Label Color'' ||The color of the node label. ||
||''Node Label Transparency'' ||The transparency of the color of the node label. Allows for transparency. ||
||''Node Label Position'' ||The position of the node label relative to the node. ||
||''Node Label Width'' ||The maximum width of the node label. If the node label is wider than the specified width, Cytoscape will automatically wrap the label on space characters. Cytoscape will not hyphenate words, meaning that if a single word (i.e. no spaces) is longer than maximum width, the word will be displayed beyond the maximum width. ||
||''Node Tooltip'' ||The text of the tooltip that appears when a mouse hovers over the node. ||
||''Node Size'' ||The size of the node. Width and height will be equal. This visual property is mutually exclusive of ''Node Height'' and ''Node Width''. ||
||''Node Height'' ||The height of the node. Height will be independent of width. This visual property is mutually exclusive of ''Node Size''. ||
||''Node Width'' ||The width of the node. Width will be independent of height. This visual property is mutually exclusive of ''Node Size''. ||
||''Node Custom Graphics 1 - 9'' ||Custom Graphics objects on the node. These are selected from the ''Custom Graphics Manager'' ||
||''Node Custom Graphics Position 1 - 9'' ||Position of Custom Graphics relative to the node. By default, this value is set to center. ||
||''Node X Location'' ||X location of the node. Default value of this will be ignored. The value will be used only when mapping function is defined. ||
||''Node Y Location'' ||Y location of the node. Default value of this will be ignored. The value will be used only when mapping function is defined. ||
||''Node Visible'' ||Node is visible or not. By default, this value is set to ''true''. ||
This style does not have mappings except node/edge labels, but you can modify the network graphics by editing the ''Default Value'' for any property.

Additional sample styles are available in the {{{sampleStyles.xml}}} file in the ''sampleData'' directory. You can import the sample file from '''File → Import → Styles...'''.

=== List of Node, Edge and Network Properties ===

Cytoscape allows a wide variety of properties to be controlled. These are summarized in the tables below.
||'''Node Properties''' ||'''Description''' ||
||''Border Line Type'' ||The type of line used for the border of the node. ||
||''Border Transparency'' ||The opacity of the color of the border of the node. Allows for transparency. ||
||''Border Width'' ||The width of the node border. ||
||''Label'' ||The text used for the node label. ||
||''Label Font Face'' ||The font used for the node label. ||
||''Label Font Size'' ||The size of the font used for the node label. ||
||''Label Position'' ||The position of the node label relative to the node. ||
||''Label Transparency'' ||The transparency of the color of the node label. Allows for transparency. ||
||''Label Width'' ||The maximum width of the node label. If the node label is wider than the specified width, Cytoscape will automatically wrap the label on space characters. Cytoscape will not hyphenate words, meaning that if a single word (i.e. no spaces) is longer than maximum width, the word will be displayed beyond the maximum width. ||
Line 117: Line 101:


||'''Visual Attributes Associated with Edges''' ||'''Description''' ||
||''Edge Stroke Color (Unselected)'' ||The color of the edge. ||
||''Edge Stroke Color (Selected)'' ||The color of the edge when selected. ||
||''Edge Transparency'' ||The opacity of the color of the edge. Allows for transparency. ||
||''Edge Line Type'' ||The type of stoke used to render the line (solid, dashed, etc.) ||
||''Edge Width'' ||The width of the line. ||
||''Edge Label'' ||The text used for the edge label. ||
||''Edge Label Color'' ||The color of the edge label. ||
||''Edge Label Transparency'' ||The opacity of the color of the edge label. Allows for transparency. ||
||''Edge Label Font Face'' ||The font used for the edge label. ||
||''Edge Label Font Size'' ||The size of the font used for the edge label. ||
||''Edge Tooltip'' ||The text of the tooltip that appears when a mouse hovers over the edge. ||
||''Edge Source Arrow Unselected Paint'' ||The color of the arrow on the source node end of the edge. ||
||''Edge Source Arrow Selected Paint'' ||The selected color of the arrow on the source node end of the edge. ||
||''Edge Source Arrow Shape'' ||The shape of the arrow on the source node end of the edge. ||
||''Edge Target Arrow Unselected Paint'' ||The color of the arrow on the target node end of the edge. ||
||''Edge Target Arrow Selected Paint'' ||The selected color of the arrow on the target node end of the edge. ||
||''Edge Target Arrow Shape'' ||The shape of the arrow on the target node end of the edge. ||
||''Edge Bend'' ||The edge bend. Defines how the edge is rendered. Users can add multiple handles to define how to bend the edge line. ||
||''Edge Curved'' ||If ''Egde Bend'' is defined, edges will be rendered as straight or curved lines. If this value is set to ''true'', edges will be drawn as curved lines. ||
||''Edge Visible'' ||Edge is visible or not. By default, this value is set to ''true''. ||


||'''Network Visual Properties''' ||'''Description''' ||
||''Network Background Paint'' ||The background color of the network view. ||
||''Network Title'' ||The title of the network view. ||
||''Network Height'' ||The height of the network view. ||
||''Network Width'' ||The width of the network view. ||
||''Network Scale Factor'' ||The zoom level of the network view. ||
||''Network Center X Location'' ||The X location of network view center. ||
||''Network Center Y Location'' ||The Y location of network view center. ||
||''Network Edge Selection'' ||Edges are selectable or not. If this is ''false'', users cannot select edges.||
||''Network Node Selection'' ||Nodes are selectable or not. If this is ''false'', users cannot select nodes.||
||''Paint > Paint'' ||The color of the node. ||
||''Paint > Border Paint'' ||The color of the border of the node. ||
||''Paint > Custom Graphics 1-9'' || A user-defined custom graphic that is displayed on the node. ||
||''Paint > Custom Graphics Position 1-9'' || The position of each custom graphic. ||
||''Paint > Fill Color'' ||The color of the node. ||
||''Paint > Label Color'' ||The color of the node label. ||
||''Paint > Selected Paint'' ||The color of the node when selected. ||
||''Shape'' ||The shape of the node. ||
||''Size > Size'' ||The size of the node. Width and height will be equal. This property is mutually exclusive of ''Node Height'' and ''Node Width''. ||
||''Size > Custom Graphics Size 1-9'' || A user-defined custom graphic size that is displayed on the node. ||
||''Size > Height'' ||The height of the node. Height will be independent of width. This property is mutually exclusive of ''Node Size''. ||
||''Size > Width'' ||The width of the node. Width will be independent of height. This property is mutually exclusive of ''Node Size''. ||
||''Size > Fit Custom Graphics to node'' ||Toggle to fit Custom Graphics size to node size. ||
||''Size > Lock node width and height'' ||Toggle to ignore ''Width'' and ''Height'', and to use ''Size'' for both values. ||
||''Tooltip'' ||The text of the tooltip that appears when a mouse hovers over the node. ||
||''Transparency'' ||The opacity of the color of the node. Zero means totally transparent, and 255 is most opaque.||
||''Visible'' ||Node is visible or not. By default, this value is set to ''true''. ||
||''X Location'' ||X location of the node. Default value of this will be ignored. The value will be used only when mapping function is defined. ||
||''Y Location'' ||Y location of the node. Default value of this will be ignored. The value will be used only when mapping function is defined. ||
||''Z Location'' ||Z location of the node. Default value of this will be ignored. The value will be used only when mapping function is defined. ||


||'''Edge Properties''' ||'''Description''' ||
||''Bend'' ||The edge bend. Defines how the edge is rendered. Users can add multiple handles to define how to bend the edge line. ||
||''Curved'' ||If ''Egde Bend'' is defined, edges will be rendered as straight or curved lines. If this value is set to ''true'', edges will be drawn as curved lines. ||
||''Label'' ||The text used for the edge label. ||
||''Label Font Face'' ||The font used for the edge label. ||
||''Label Font Size'' ||The size of the font used for the edge label. ||
||''Label Transparency'' ||The opacity of the color of the edge label. Allows for transparency. ||
||''Line Type'' ||The type of stoke used to render the line (solid, dashed, etc.) ||
||''Paint > Paint''||The color of the edge.||
||''Paint > Color (Selected) > Color (Selected)''||The color of the edge.||
||''Paint > Color (Selected) > Source Arrow Selected Paint'' ||The selected color of the arrow on the source node end of the edge. ||
||''Paint > Color (Selected) > Stroke Color (Selected)'' ||The color of the edge when selected. ||
||''Paint > Color (Selected) > Target Arrow Selected Paint'' ||The selected color of the arrow on the target node end of the edge. ||
||''Paint > Color (Unselected) > Color (Unselected)''||The color of the edge.||
||''Paint > Color (Unselected) > Source Arrow Unselected Paint'' ||The color of the arrow on the source node end of the edge. ||
||''Paint > Color (Unselected) > Stroke Color (Unselected)'' ||The color of the edge. ||
||''Paint > Color (Unselected) > Target Arrow Unselected Paint'' ||The color of the arrow on the target node end of the edge. ||
||''Paint > Label Color'' ||The color of the edge label. ||
||''Source Arrow Shape'' ||The shape of the arrow on the source node end of the edge. ||
||''Target Arrow Shape'' ||The shape of the arrow on the target node end of the edge. ||
||''Tooltip'' ||The text of the tooltip that appears when a mouse hovers over the edge. ||
||''Transparency'' ||The opacity of the color of the edge. Allows for transparency. ||
||''Visible'' ||Edge is visible or not. By default, this value is set to ''true''. ||
||''Width'' ||The width of the line. ||


||'''Network Properties''' ||'''Description''' ||
||''Background Paint'' ||The background color of the network view. ||
||''Center X Location'' ||The X location of network view center. ||
||''Center Y Location'' ||The Y location of network view center. ||
||''Edge Selection'' ||Edges are selectable or not. If this is ''false'', users cannot select edges.||
||''Node Selection'' ||Nodes are selectable or not. If this is ''false'', users cannot select nodes.||
||''Scale Factor'' ||The zoom level of the network view. ||
||''Size > Size''||The size of the network view.||
||''Size > Height'' ||The height of the network view. ||
||''Size > Width'' ||The width of the network view. ||
||''Title'' ||The title of the network view. ||



=== Available Shapes and Line Styles ===
Line 155: Line 166:
||''Node Shapes'' || {{attachment:NewVizMapperNodeShape.png}} ||
||''Edge Line Types'' || {{attachment:NewVizMapperLineType.png}} ||
||''Arrow Shapes'' || {{attachment:NewVizMapperArrowType.png}} ||




For each visual attribute, you can specify a default value or define a dynamic visual mapping. Cytoscape currently supports three different types of visual mappers:

 1. '''Passthrough Mapper'''
  * The values of network attributes are passed directly through to visual attributes. A passthrough mapper is typically used to specify node/edge labels. For example, a passthrough mapper can label all nodes with their common gene names.
 1. '''Discrete Mapper'''
  * Discrete data attributes are mapped to discrete visual attributes. For example, a discrete mapper can map different types of molecules to different node shapes, such as rectangles for gene products and ellipses for metabolites
 1. '''Continuous Mapper'''
  * Continuous data are mapped to visual attributes. Depending on the visual attribute, there are three kinds of continuous mappers:
   i. '''Continuous-to-Continuous Mapper''': for example, you can map a continuous numerical value to a node size.
   i. '''Color Gradient Mapper''': This is a special case of continuous-to-continuous mapping. Continuous numerical values are mapped to a color gradient.
   i. '''Continuous-to-Discrete Mapper''': for example, all values below 0 are mapped to square nodes, and all values above 0 are mapped to circular nodes.
||''Node Shapes'' || {{attachment:NodeShapeOptions.png}} ||
||''Line Types'' || {{attachment:BorderLineOptions.png}} ||
||''Arrow Shapes'' || {{attachment:ArrowShapeOptions.png}} ||

<<Anchor(mappers)>>
=== How Mappings Work ===
For each property, you can specify a default value or define a dynamic mapping. Cytoscape currently supports three different types of mappings:

 1. '''Passthrough Mapping'''
  * The values of network column data are passed directly through to properties. A passthrough mapping is typically used to specify node/edge labels. For example, a passthrough mapping can label all nodes with their common gene names.
 1. '''Discrete Mapping'''
  * Discrete column data are mapped to discrete properties. For example, a discrete mapping can map different types of molecules to different node shapes, such as rectangles for gene products and ellipses for metabolites.
 1. '''Continuous Mapping'''
  * Continuous data are mapped to properties. Depending on the property, there are three kinds of continuous mapping:
   i. '''Continuous-to-Continuous Mapping''': for example, you can map a continuous numerical value to node size.
   i. '''Color Gradient Mapping''': This is a special case of continuous-to-continuous mapping. Continuous numerical values are mapped to a color gradient.
   i. '''Continuous-to-Discrete Mapping''': for example, all values below 0 are mapped to square nodes, and all values above 0 are mapped to circular nodes.
Line 175: Line 185:
The table below shows visual mapper support for each visual property. The table below shows mapping support for each property.
Line 179: Line 189:
||<style="text-align: center;">- ||Mapping is not supported for the specified visual property. ||
||<style="text-align: center;">+ ||Mapping is fully supported for the specified visual property. ||
||<style="text-align: center;">o ||Mapping is partially su
pported for the specified visual property. Support for “continuous to continuous” mapping is not supported. ||




'''Node Visual Mappings'''
||||<style="text-align: center;">'''Node Visual Properties''' ||'''Passthrough Mapper''' ||'''Discrete Mapper''' ||'''Continuous Mapper''' ||
||<style="text-align: center;" |6>Color ||''Node Color'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Node
Transparency'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Node Border Color'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Node Border Transparency'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Node Label Color'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Node Label Transparency'' ||<style="text-align: center;">o
||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||<style="text-align: center;" |4>Numeric ||''Node Size/Width/Height'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Node Font Size'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Node Line Width'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Node Label Width'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||<style="text-align: center;" |7>Other ||''Node Border Line Type'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Node
Shape'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Node Label'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Node Tooltip'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Node Font Family'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Node Label Position'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Node Show Nested Network'' ||<style="text-align: center;">o
||<style="text-align: center;">+ ||<style="text-align: center;">o ||




'''Edge Visual Mappings'''
||||<style="text-align: center;">'''Edge Properties''' ||'''Passthrough Mapper''' ||'''Discrete Mapper''' ||'''Continuous Mapper''' ||
||<style="text-align: center;" |6>Color ||''Edge Color'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Edge Transparency'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Edge Target Arrow Color'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Edge Source Arrow Color'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Edge Label Color'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Edge Label Transparency'' ||<style="text-align: center;">- ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||<style="text-align: center;" |3>Numeric ||''Edge Line Width'' ||<style="text-align: center;">- ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Edge Font Size'' ||<style="text-align: center;">- ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Edge Label Width'' ||<style="text-align: center;">- ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||<style="text-align: center;" |6>Other ||''Edge Line Type'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Edge
Source Arrow Shape'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Edge Target Arrow Shape'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Edge Label'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Edge Tooltip'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Edge Font Family'' ||<style="text-align: center;">- ||<style="text-align: center;">+ ||<style="text-align: center;">o ||




=== Text Passthrough Mapper (New feature for version 2.8) ===
In Cytoscape 2.8.0 and later versions, the Passthrough Mapper can recognize some text representations of values.  This means, if you have an integer attribute named ''Node Size Values'', you can directly map those values as the Node Size by setting ''Node Size Values'' as controlling attribute name for Node Size Passthrough mapping.  The following value types are supported:
||<style="text-align: center;">- ||Mapping is not supported for the specified property. ||
||<style="text-align: center;">+ ||Mapping is fully supported for the specified property. ||
||<style="text-align: center;">o ||Mapping is partially
supported for the specified property. Support for “continuous to continuous” mapping is not supported. ||


'''Node Mappings'''
||||<style="text-align: center;">'''Node Property''' ||'''Passthrough Mapping''' ||'''Discrete Mapping''' ||'''Continuous Mapping''' ||
||<style="text-align: center;" |6>Color ||''Fill Color'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Transparency'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Bor
der Paint'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Border Transparency'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Label
Color'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Label Transparency'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||<style="text-align: center;" |4>Numeric ||''Size/Width/Height'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Label Font Size'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Bor
der Width'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Label Width'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||<style="text-align: center;" |7>Other ||''Border
Line Type'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Shape'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Label'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Tooltip'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Label Font Face'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Label Position'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''
Nested Network Image Visible'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||


'''Edge Mappings'''
||||<style="text-align: center;">'''Edge Properties''' ||'''Passthrough Mapping''' ||'''Discrete Mapping''' ||'''Continuous Mapping''' ||
||<style="text-align: center;" |6>Color ||''Color'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Transparency'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Target Arrow Color'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Source Arrow Color'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Label Color'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Label Transparency'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||<style="text-align: center;" |3>Numeric ||''Width'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''
Label Font Size'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||''Label
Width'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||
||<style="text-align: center;" |6>Other ||''Line Type'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Source Arrow Shape'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Target Arrow Shape'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Label'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Tooltip'' ||<style="text-align: center;">+ ||<style="text-align: center;">+ ||<style="text-align: center;">o ||
||''Label Font Face'' ||<style="text-align: center;">o ||<style="text-align: center;">+ ||<style="text-align: center;">o ||


==== Text Passthrough Mapping ====
In Cytoscape 2.8.0 and later versions, the Passthrough Mapping can recognize some text representations of values. This means, if you have a string column named ''Node Size Values'', you can directly map those values as the Node Size by setting '''Node Size Values''' as controlling column with '''Node Size Passthrough''' mapping. The following value types are supported:
Line 234: Line 238:
 * Numerical Values: Automatically mapped to the specified Visual Property.
 * Custom Graphics: URL String.  If the URL is valid and an actual image data exists there, Cytoscape automatically downloads the image and maps it to the node.

==== Examples ====
 * Numerical Values: Automatically mapped to the specified property.
 * Custom Graphics: URL String. If the URL is valid and an actual image data exists there, Cytoscape automatically downloads the image and maps it to the node.

===== Examples =====
Line 239: Line 243:
  . {{attachment:colorPt1.png}} {{attachment:colorPt2.png}}   . {{attachment:ColorPassthrough.png}} {{attachment:colorPt2.png}}
Line 242: Line 246:
  . {{attachment:sizePt1.png}} {{attachment:sizePt2.png}}   . {{attachment:SizePassthrough.png}} {{attachment:sizePt2.png}}
Line 245: Line 249:
  . {{attachment:cgPt1.png}} {{attachment:cglorPt2.png}}

== Custom Graphics Manager ==
  . {{attachment:CustomGraphicsPassthrough.png}} {{attachment:cglorPt2.png}}

== Custom Graphics ==

For Cytoscape 2.8.0 and later versions, Cytoscape supports '''Custom Graphics''' for nodes. Using the Style interface, you can map Custom Graphics to nodes like any other property. Cytoscape has a set of graphics and you can also add your own graphics in the '''Custom Graphics Manager''', as well as remove or modify existing graphics.

[[http://biosciencedbc.jp/taxonomy_icon/taxonomy_icon.cgi?lng=en|Taxonomy Icon]] set used in this section is created by Database Center for Life Science (DBCLS) and is distributed under Creative Commons License ([[http://creativecommons.org/licenses/by/2.1/jp/deed.en|CC BY 2.1.]])

=== Managing Images with the Custom Graphics Manager ===
The '''Custom Graphics Manager''' is available under '''View → Open Custom Graphics Manager''':
Line 250: Line 262:
For Cytoscape 2.8.0 and later versions, Cytoscape supports '''''Custom Graphics''''' for nodes. You can add all kinds of bitmap images, such as jpg, png, or gif, on the top of network nodes. From the user's point of view, this is simply an addition to the Visual Properties, and you can use same VizMap user interface to map Custom Graphics to nodes. However, before mapping images, you need to prepare Custom Graphics in the '''''Custom Graphics Manager'''''. It is a simple GUI component to add/remove images to or from a Cytoscape session.

[[http://biosciencedbc.jp/taxonomy_icon/taxonomy_icon.cgi?lng=en|Taxonomy Icon]] set used in this section is created by Database Center for Life Science (DBCLS) and is distributed under Creative Commons License ([[http://creativecommons.org/licenses/by/2.1/jp/deed.en|CC BY 2.1.]])

=== Adding New Images to Cytoscape ===
The '''''Custom Graphics Manager''''' supports drag and drop for image files and URLs. If you want to add images from a web browser or local file system, you can drag images from them and drop those images onto the list of images on the left.
 * You can add images by drag-and-drop of image files and URLs. If you want to add images from a web browser or local file system, you can drag images from them and drop those images onto the list of images on the left.
  * '''Note:''' When you drag and drop images from web browser, make sure that you are actually dragging the URL for the image. In some cases, images are linked to an HTML page or scripts, and in such cases, this drag and drop feature may not work.

 * If you want to add all images in a folder, press the '''+''' button on the bottom of the Custom Graphics Manager window.
Line 259: Line 269:
If you want to add all images in a folder, press the '''+''' button on the bottom of the Custom Graphics Manager window.

'''Note: When you drag and drop images from web browser, make sure that you are actually dragging the URL for the image. In some cases, images are linked to an HTML page or scripts, and in such cases, this drag and drop feature may not work.'''

=== Removing Images ===
To remove images from the current session's Custom Graphics library, simply select graphics from the list and press the '''-''' button.

=== Resizing Images ===
You can resize images by typing width/height in the text box. If ''Keep Aspect Ratio'' box is checked, the width-height ratio is always synchronized. Any time, you can resize the image to the original size by pressing '''Original''' button.

=== Using Custom Graphics in the VizMapper ===
 . {{attachment:cg_mapping1.png}}

'''Custom Graphics''' is a new type of Visual Property and you can use them from the standard VizMap user interface. There are nine Custom Graphics Visual Properties ('''Node Custom Graphics 1 - 9''') and they will be displayed in the standard VizMap Default View Editor or Mapping Editors.
 * To remove images from the current session's '''Custom Graphics''' library, simply select graphics from the list and press the '''-''' button.
 * Images can be resized by defining specific '''Width''' and '''Height''' information. If the ''Aspect Ratio'' box is checked, the width-height ratio is always synchronized. You can resize the image to the original size by pressing '''Original''' button.

=== Using Custom Graphics in Styles ===
 . {{attachment:CustomGraphicsVizMapper.png}} {{attachment:CustomGraphicsNodes.png}}

'''Custom Graphics''' is used and defined like any other property, through the '''Style''' interface. There are nine '''Custom Graphics''' properties.
 * To select a custom graphic, first add the Custom Graphics property to the '''Properties''' list in the '''Style''' interface (on the '''Node''' tab, select '''Properties → Paint → Custom Paint ''n'' → Custom Graphics ''n'''''). Next, click the '''Default Value''' column of the Custom Graphics property to bring up the Graphics dialog. Select an image, a chart or a gradient and then click '''Apply'''.
  * By default, custom graphics objects are automatically resized to be consistent with the Node Size property.
 * To remove a custom graphics, click the '''Remove Graphics''' button on the Graphics dialog.

 . {{attachment:CustomGraphicsSelector.png}}

 * Cytoscape provides three kinds of Custom Graphics, selectable via tabs on the Custom Graphics dialog:

  * '''Images:''' You can select one of the provided images or add your own (use the '''Custom Graphics Manager''' to add more images to the list).
  * '''Charts:''' The following chart types are available: {{attachment:BarChartIcon.png}} ''Bar'' , {{attachment:BoxChartIcon.png}} ''Box'', {{attachment:HeatMapChartIcon.png}} ''Heat Map'', {{attachment:LineChartIcon.png}} ''Line'', {{attachment:PieChartIcon.png}} ''Pie'', {{attachment:RingChartIcon.png}} ''Ring''.
  * '''Gradients:''' You can also set ''Linear'' and ''Radial'' gradients to nodes.

{{attachment:BarChartEditor.png}} {{attachment:RadialGradientEditor.png}}
Line 275: Line 291:
Each Custom Graphics Visual Property is associated with a position. You can edit their positions by using same UI as Label Position. Each custom graphics property is associated with a position. You can edit their positions by using the UI available in the '''Default Value''' column for any '''Custom Graphics Position''' property.
 * '''Note:''' Setting custom graphics positions for ''Linear'' or ''Radial'' gradients has no effect, as they are always centered on the node.
Line 278: Line 295:
This number that appears with the Custom Graphics Visual Property represents an ordering of layers. ''Basic node color and shape are always rendered first, then Node Custom Graphics 1, 2, ..., through 9.''

==== Synchronize Custom Graphics to Node Size ====
 . {{attachment:cg_size_dependency1.png}}

By default, Custom Graphics objects are automatically resized to be consistent with the Node Size Visual Property. To control Custom Graphics size separately, uncheck the '''''Fit Custom Graphics to node''''' dependency. You can find this check box in the Default Editor's '''Dependencies''' panel.

==== Custom Graphics Selector ====
 . {{attachment:CustomGraphicsSelector.png}}

To select a Custom Graphics, just click one of them and press '''Apply'''. To remove a value from mappings/defaults, select the '''Remove Graphics''' option from the Custom Graphics list.
The number that appears with the custom graphics property represents an ordering of layers. Basic node color and shape are always rendered first, then node custom graphics 1, 2, ..., through 9.
Line 291: Line 298:
In general, saving and loading Custom Graphics is automatic.  When you quit Cytoscape, all of the Custom Graphics in the manager will be saved automatically.  There are two types of saving: In general, saving and loading Custom Graphics is automatic. When you quit Cytoscape, all of the Custom Graphics in the manager will be saved automatically. There are two types of saving:
Line 294: Line 301:
  . When you save the current session to a file, the Custom Graphics '''used in Visual Styles''' will be saved to that file. For example, if you have a Visual Style with a discrete mapping for ''Custom Graphics'', all Custom Graphics used in the style will be saved to the session file. Other graphics will '''not''' be saved in your session file. This is because your image library can be huge when you add thousands of images to the Custom Graphics Manager and it takes very long time to save and load the session file.
  . When you save the current session to a file, the Custom Graphics '''used in Style''' will be saved to that file. For example, if you have a style with a discrete mapping for ''Custom Graphics'', all custom graphics used in the style will be saved to the session file. Other graphics will '''not''' be saved in your session file. This is because your image library can be huge when you add thousands of images to the Custom Graphics Manager and it takes very long time to save and load the session file.
Line 297: Line 306:
  . When you select '''''File → Quit''''', all of Custom Graphics in the Manager will be saved automatically to your Cytoscape setting directory.  Usually, it's {{{YOUR_HOME_DIRECTORY/CytoscapeConfiguration/images3}}}.   . When you select '''File → Quit''', all of Custom Graphics in the Manager will be saved automatically to your Cytoscape setting directory. Usually, it's {{{YOUR_HOME_DIRECTORY/CytoscapeConfiguration/images3}}}.
Line 301: Line 310:
== Visual Styles Tutorials ==
The following tutorials demonstrate some of the basic !VizMapper features. Each tutorial is independent of the others.

=== Tutorial 1: Create a Basic Visual Style and Set Default Values ===
The goal of this tutorial is to learn how to create a new Visual Style and set some default values.

'''Step 1. Load a sample network.''' From the main menu, select ''File → Import → Network → File...'', and select {{{sampleData/galFiltered.sif}}}.

'''Step 2. Create some node/edge statistics by Network Analyzer.''' Network Analyzer calculates some basic statistics for nodes and edges. From the main menu, select ''Tools → Network Analyzer → Network Analysis → Analyze Network'', and click OK. Once the result is displayed, simply close the window. All statistics are stored as a regular table data.

'''Step 3. Open the !VizMapper.''' Select the !VizMapper tab in the Control Panel at the left of the screen. You will now see the !VizMapper main panel, as shown below.

 . {{attachment:NewVizMapper.png}}

'''Step 4. Create a new visual style.''' Click the Options {{attachment:VizMapOptionIcon.png}} button, and select ''Create New Visual Style''. Then enter a name for your new visual style when prompted. You will see an empty visual style in the !VizMapper Main Panel, as shown below.

 . {{attachment:EmptyVisualStyle.png}}

Since no mappings are set up yet, all visual attributes are listed in the Unused Properties category. From this panel, you can create node/edge mappings for all visual properties.

'''Step 5. Edit default values.''' Open the Default Appearance Editor by clicking on the Defaults graphics window (shown below) in the !VizMapper Main Panel.

 . {{attachment:InitialDefaultEditor.png}}

'''Step 6. Change the default node color and shape.''' To set the default node shape to triangles, click "Node Shape" in the Default Visual Properties list. A list of available node shapes will be shown. Click on the Triangle icon and then click the Apply button. The Default Appearance Editor will be automatically updated. You can edit other default values by clicking on visual attribute names on the list. In the example shown below, the node shape is set to Round Rectangle, while the node color is set to white.

 . {{attachment:TriangleDefaultEditor.png}}

'''Step 7. Apply your settings.''' When you finish editing, click the Apply button at the bottom of the editor. Your new Visual Style will be applied to the current network, as shown below.

 . {{attachment:Tut1GalFiltered.png}}

=== Tutorial 2: Creating a New Visual Style with a Discrete Mapper ===
Now you have a network with new Visual Style. The following section demonstrates how to create a new visual style using a discrete mapper. The goal is to draw protein-DNA interactions as dashed lines, and protein-protein interactions as solid lines.

'''Step 1. Choose a visual attribute.''' Double click the '''''Edge Stroke Color (Unselected)''''' entry listed in Unused Properties. It will now appear at the top of the list, under the Edge Visual Mapping category (as shown below).

'''Step 2. Choose an edge column.''' Click on the cell to the right of the Edge Color entry and select "interaction" from the dropdown list that appears.

'''Step 3. Choose a mapping type.''' Set the Discrete Mapper option as the Mapping Type. All available attribute values for "interaction" will be displayed, as shown below.

 . {{attachment:EdgeMapping2.png}}

'''Step 4. Set the mapping relationship.''' Click the empty cell next to "pd" (protein-DNA interactions). On the right side of the cell, '''...''' and '''X''' buttons will appear. Click on the '''...''' button. A popup window will appear; select green or similar, and the change will immediately appear on the network window.

 . {{attachment:CellEditor1.png}}

Repeat step 4 for "pp" (protein-protein interactions), but select darker color as its edge color. Then repeat steps 3 through 4 for the Edge Line Type attribute. You can select the correct line style (dashed or solid) from the list.

 . {{attachment:EdgeMapping3.png}}
----

== Styles Tutorials ==
The following tutorials demonstrate some of the basic '''Style''' features. Each tutorial is independent of the others.

=== Tutorial 1: Create a Basic Style and Set Default Values ===
The goal of this tutorial is to learn how to create a new Style and set some default values.

 1. '''Load a sample network.''' From the main menu, select '''File → Import → Network → File...''', and select {{{sampleData/galFiltered.sif}}}.

 1. '''Create some node/edge statistics by Network Analyzer.''' Network Analyzer calculates some basic statistics for nodes and edges. From the main menu, select '''Tools → Network Analyzer → Network Analysis → Analyze Network''', and click '''OK'''. Once the result is displayed, simply close the window. All statistics are stored as regular table data.

 1. Select the '''Style''' panel in the Control Panel.

 {{attachment:StylesInterface.png}}

 1. '''Create a new style.''' Click the '''Options''' {{attachment:OptionsDropDown.png}} drop-down, and select '''Create New Style'''. Enter a name for your new style when prompted.

 {{attachment:NewStyle.png}}

Since no mappings are set up yet, only default values are defined for some of the properties. From this panel, you can create node/edge mappings for all properties.

 1.#5 '''Change the default node color and shape.''' To set the default node shape to triangles, click the '''Default Value''' column for '''Node Shape'''. A list of available node shapes will be shown. Select the '''Round Rectangle''' icon and click the '''Apply''' button. You can edit other default values in the same way. In the example shown below, the node shape is set to '''Round Rectangle''', while the '''Node Fill Color''' is set to white. The new Style is automatically applied to the current network, as shown below.

 {{attachment:Tutorial1-final.png}}

=== Tutorial 2: Creating a New Style with a Discrete Mapping ===
Now you have a network with new Style. The following section demonstrates how to create a new style using a discrete mapping. The goal is to draw protein-DNA interactions as dashed lines, and protein-protein interactions as solid lines.

 1. '''Choose a property.''' In the Edge tab of the Style panel, find the '''Stroke Color (Unselected)''' property.

 1. '''Choose a data column to map to.''' Expand the entry for '''Stroke Color (Unselected)''' by clicking the arrow icon to the right. Click the '''Column''' entry and select "interaction" from the drop-down list that appears.

 1. '''Choose a mapping type.''' Under '''Mapping Type''', select '''Discrete Mapping'''. All available column values for "interaction" will be displayed, as shown below.

 {{attachment:DiscreteMapper.png}}

 1. '''Set the mapping relationship.''' Click the empty cell next to "pd" (protein-DNA interactions). On the right side of the cell, click on the '''...''' button that appears. A popup window will appear; select green or similar, and the change will immediately appear on the network window.

 {{attachment:EdgeColorTut2.png}}

Repeat step 4 for "pp" (protein-protein interactions), but select a darker color as edge stroke color. Then repeat steps 3 through 4 for the ''Edge Line Type'' property, by selecting the correct line style ("Dash" or "Solid") from the list.
Line 354: Line 355:
{{attachment:NewVizMapperInteractionsRedBlue.png}}

=== Tutorial 3: Creating a New Visual Style with a Continuous Mapper ===
At this point, you have a network with some edge visual mappings. Next, let's create mappings for nodes. The following section demonstrates how to create a new visual style using a continuous mapper. The goal is to superimpose node statistics (in this example, node degree) onto a network and display it along a color gradient.

'''Step 1. Choose a visual attribute.''' Double click the Node Fill Color entry listed in Unused Properties. Node Fill Color will now appear at the top of the list, under the Node Visual Mapping category.

'''Step 2. Choose a node table column.''' Click on the cell to the right of the Node Fill Color entry and select "deg" from the dropdown list that appears.

'''Step 3. Choose a mapping type.''' Set the Continuous Mapping option as the Mapping Type. This automatically creates a default mapping

 . {{attachment:DefaultColorGradient.png}}

'''Step 4. Define the points where colors will change.''' Double-click on the black-and-white gradient rectangle next to Graphical View to open the Color Gradient Mapper. Click and drag one to left, and move the second point to right.

 . {{attachment:DefaultColorGradientEditor.png}}

'''Step 5. Define the colors between points.''' Double-click on the leftmost triangle (facing left) and a color palette will appear. Choose a shade of yellow and click OK. Double-click on the triangle at left and set the color white. For the triangle at the right, set its color to green.

 . {{attachment:RedYellowColorGradient2.png}}

The color gradients will immediately appear in the network window. All nodes with degree 1 will be set to white, and all values between 1 and 18 will be painted with a white/green color gradient. A sample screenshot is below.

{{attachment:VizMapperExpRedBlack.png}}

'''Step 6. Repeat for other Visual Properties.''' You can create some more mappings for other number table data. For example, edge data table column ''ebt'' is a number, so you can use it for continuous mapping. The following is an example visualization by mapping Edge Width to ebt.

{{attachment:VizMapperS3Final.png}}

=== Tutorial 4: How to Use Utilities for Discrete Mappers ===
The following tutorial demonstrates utilities for editing discrete mappings. The goal of this section is learning how to set and adjust values for discrete mappings automatically.

 1. Switch the Visual Style to ''Minimal''. Now your network looks like the following:
 . {{attachment:Minimal.png}}
 1. Cretate a '''Discrete Node Color Mapping'''. Select ''spl'' (Shortest Path Length generated by Network Analyzer) as controlling attribute.
 1. Click '''Node Fill Color''' cell, then right click to show popup menu. Select __Mapping Value Generators → Rainbow__. It generates different colors for different table values as shown below:
 . {{attachment:Rainbow1.png}}
 1. Cretate a '''Discrete Node Label Font Size Mapping'''. Select ''spl'' as controlling attribute.
 1. Click '''Node Label Font Size''' and right click to show popup menu. Select __Mapping Value Generators → Number Series__. Type ''3'' for the first value and click OK. Enter ''3'' for increment.
 1. Apply yFiles → Organic layout. The final view is shown below:
 . {{attachment:tutorial4_last.png}}

This mapping generator utility is useful for categorical data. The following example is created by adding node color discrete mapping from species column to color.

{{attachment:tutorial4_sample.png}}

=== Tutorial 5: Using Custom Graphics in Visual Styles ===
This tutorial is a quick introduction to Custom Graphics feature. You can assign up to nine images per node as a part of Visual Style.

 1. Prepare images. These can be any type of bitmap graphics. In this tutorial, we are going to use theCrystal Project's PNG icons. You can download it from [[http://everaldo.com/crystal/crystal_project_256x256.zip|here]].
 1. Start Cytoscape and select __View → Open Custom Graphics Manager__. Cytoscape 3 has some preset images and in this example, we use these presets. You can close the Custom Graphics Manager window for now.
  . {{attachment:cgTutorial1.png}}
 1. Load a network and run Network Analyzer. This creates several new table columns (statistics for nodes and edges).
 1. Click ''VizMapper'' tab in the Control Panel, and select ''Solid'' style.
 1. Click default view to open Default Appearance Editor.
 1. Click '''Node Custom Graphics 1''' and select any of a custom graphics from the list. Click '''Node Transparency''' and set the value to zero.
  . {{attachment:cgTutorial2.png}}
{{attachment:Tutorial2-final.png}}

=== Tutorial 3: Creating a New Style with a Continuous Mapping ===
At this point, you have a network with some edge mappings. Next, let's create mappings for nodes. The following section demonstrates how to create a new style using a continuous mapping. The goal is to superimpose node statistics (in this example, node degree) onto a network and display it along a color gradient.

 1. '''Choose a property.''' In the Node tab of the Style panel, find the '''Fill Color''' property.
 1. '''Choose a node table column.''' Expand the entry for '''Fill Color''' by clicking the arrow icon to the right. Click the '''Column''' entry and select "Degree" from the drop-down list that appears.
 1. '''Choose a mapping type.''' Set the "Continuous Mapping" option as the ''Mapping Type''. This automatically creates a default mapping.

 {{attachment:DefaultContinous.png}}

 1. '''Define the points where colors will change.''' Double-click on the black-and-white gradient rectangle next to Current Mapping to open the Color Gradient Mapping. Note the two smaller triangles at the top of the gradient.

 {{attachment:DefaultColorGradient.png}}

 1. '''Define the colors between points.''' Double-click on the larger leftmost triangle (facing left) and a color palette will appear. Set the color white and repeat for the smaller left-side triangle. For the triangle at the right, set its color to green and then choose the same green color for the smaller right-side triangle.

 {{attachment:GreenWhiteGradient.png}}

The color gradients will immediately appear on the network. All nodes with degree 1 will be set to white, and all values between 1 and 18 will be painted with a white/green color gradient. A sample screenshot is below.

 {{attachment:Tutorial3-final.png}}

 1.#6 '''Repeat for other properties.''' You can create some more mappings for other numeric table data. For example, edge data table column "!EdgeBetweenness" is a number, so you can use it for continuous mapping. The following is an example visualization by mapping ''Edge Width'' to "!EdgeBetweenness".

 {{attachment:Tutorial3-EdgeThickness.png}}

=== Tutorial 4: How to Use Utilities for Discrete Mapping ===
The following tutorial demonstrates utilities for editing discrete mappings. The goal of this section is learning how to set and adjust values for discrete mappings automatically.

 1. Switch the Current Style to '''Minimal'''. Now your network looks like the following:

 {{attachment:Minimal.png}}

 1. Create a discrete Node Color mapping. Select "!AverageShortestPathLength" (generated by Network Analyzer) as the controlling property.
 1. Click the '''Fill Color''' cell, then right-click it and select '''Mapping Value Generators → Rainbow'''. Cytoscape will automatically generate different colors for different property values as shown below:

 {{attachment:RainbowDiscreteMapping.png}}

 1. Create a discrete Node Label Font Size mapping. Select "!AverageShortestPathLength" as controlling property.
 1. Click the '''Node Label Font Size''' cell, then right-click it and select '''Mapping Value Generators → Number Series'''. Type '''3''' for the first value and click OK. Enter ''3'' for increment.
 1. Apply '''Layout → yFiles Layouts → Organic'''. The final view is shown below:

 {{attachment:Tutorial4-final.png}}

This mapping generator utility is useful for categorical data. The following example is created by adding node color discrete mapping from species column to color.

 {{attachment:tutorial4_sample.png}}

=== Tutorial 5: Using Custom Graphics in Styles ===
This tutorial is a quick introduction to Custom Graphics feature. You can assign up to nine images per node as a part of a Style.

 1. In this first example, we will use the presets that Cytoscape 3 has. In general, you can use any type of bitmap graphics. Custom images should be added to the '''Custom Graphics Manager''' before using them in a Style.
 1. If you are continuing from the previous tutorials, skip to the next step. Otherwise, load a network and run the Network Analyzer ('''Tools → Network Analyzer → Network Analysis → Analyze Network'''). This creates several new table columns (statistics for nodes and edges).
 1. Click the '''Style''' panel in the '''Control Panel''', and select the '''Solid''' style.
 1. Under '''Properties''', add '''Custom Graphics 1''' from '''Paint → Custom Paint 1 → Custom Graphics 1'''.
 1. In the '''Default Value''' cell of the '''Custom Graphics 1''' entry, click to open the '''Graphics''' dialog, and select any of the custom graphics from the list.
 1. In the '''Default Value''' cell of '''Transparency''', set the value to zero.
 1. Set the '''Default Value''' of node '''Size''' to 80. Also change the edge width to 6 and the node label font size to 10, to increase readability.
Line 413: Line 415:
  . {{attachment:cgTutorial3.png}}

 1. Open Custom Graphics Manager again. Drag and Drop this {{attachment:sampleImage.png}} icon to the image list. It automatically adds it to the manager.
 . {{attachment:cgTutorial4.png}}
1. Create Continuous Mapping for Node Custom Graphics 2. Select ''nbt'' as controlling column and move the handle to 0.2. Double click the region over 0.2 and set the new icon you have just added in the last step.
 . {{attachment:cgTutorial5.png}}
1. Press Apply and now open the Default Editor again. Click Custom Graphics Position 2 and move the position of the graphics to upper left.
 . {{attachment:cgTutorial6.png}}
1. Press Apply. Now the important nodes in the network (nodes with high [[http://en.wikipedia.org/wiki/Betweenness_centrality|betweenness centrality]]) is annotated with the icon.
 . {{attachment:cgTutorial7.png}}

 {{attachment:CustomGraphicsNodes.png}}

 1. Open the Custom Graphics Manager under '''View → Open Custom Graphics Manager'''. Drag and Drop this {{attachment:sampleImage.png}} icon to the image list which automatically adds it to the manager.

 {{attachment:cgTutorial4.png}}

 1. Create a continuous mapping for '''Node Custom Graphics 2'''. Select "!BetweennessCentrality" as controlling property. In the '''Continuos Mapping Editor''', add a handle position by clicking in the '''Add''' button, and move the handle to ''0.2''. Double-click the region over '''0.2''' and set the new icon you have just added in the last step.

 {{attachment:cgTutorial5.png}}

 1. Press '''Apply'''. Under '''Properties''', add '''Custom Graphics Position 2''' from '''Paint → Custom Paint 2 → Custom Graphics Position 2'''. Change the '''Default Value''' and move the position of the graphics to upper left.

 {{attachment:cgTutorial6.png}}

 1. Press '''Apply'''. Now the important nodes in the network (nodes with high [[http://en.wikipedia.org/wiki/Betweenness_centrality|betweenness centrality]]) are annotated with the icon.

 {{attachment:CustomGraphicsNodes2.png}}

=== Tutorial 6: Creating Node Charts ===
The goal of this tutorial is learning how to create and customize node charts from data stored in the Node tables.

 1. Start a new session and load a sample network. From the main menu, select '''File → Import → Network → File...''', and select {{{sampleData/galFiltered.sif}}}.

 1. Create some node/edge statistics by Network Analyzer. Network Analyzer calculates some basic statistics for nodes and edges. From the main menu, select '''Tools → Network Analyzer → Network Analysis → Analyze Network''', and click '''OK'''. Once the result is displayed, simply close the window. All statistics are stored as regular table data.

 1. Select the '''Style''' panel in the Control Panel.

 1. '''Create a new style.''' Click the '''Options''' {{attachment:OptionsDropDown.png}} drop-down, and select '''Create New Style'''.
 Enter a name for your new style when prompted.

 1. Add '''Custom Graphics 1''' to the properties list. Click '''Properties''' and select '''Paint → Custom Paint 1 → Custom Graphics 1'''.

 1. In the '''Default Value''' cell of the '''Custom Graphics 1''' property entry, click to open the '''Graphics''' dialog.

 1. Click the '''Charts''' tab and make sure the '''Bar Chart''' option is selected.

 {{attachment:BarChartPanel_6_1.png}}

 1. '''Select data columns.''' Now you have to choose the columns in the Node table that contains the data you want to be displayed as charts. The '''Available Columns''' list displays all node columns that can be used as chart data (i.e. ''single'' or ''list'' columns of numerical types).

  * First click the '''Remove All''' button to remove the current selected columns (by default, Cytoscape selects the first column in the '''Available Columns''' list).

  {{attachment:BarChartPanel_6_2.png}}

  * Now select all ''centrality'' and ''coefficient'' columns from '''Available Columns''' list and click the '''Add Selected''' button.

  {{attachment:BarChartPanel_6_3.png}}
 
 1. Click the '''Apply''' button to create bar charts with the selected data columns and default options.

 {{attachment:BarChartPanel_6_4.png}}
 {{attachment:BarChartsNetwork_6_1.png}}

 1. The network view doesn't look so good yet, so let's make a few changes to its Style before we continue. In the example shown below, the node '''Shape''' is set to ''Rectangle'', while the node '''Fill Color''' is set to ''white''. It's also a good idea to apply another layout (e.g. select '''Layout → yFiles Layouts → Organic''').
 
 {{attachment:BarChartsNetwork_6_2.png}}

 1. Focus on one node to see the chart details. For example search for and then focus on node "YMR043W".

 {{attachment:BarChartsNode_6_1.png}}

 1. '''Change other chart options.''' Click the '''Default Value''' cell of the '''Custom Graphics 1''' property again in order to open the '''Graphics''' dialog and then select the '''Options''' tab on the Bar Chart editor.

 {{attachment:BarChartPanel_6_5.png}}
 <<BR>>
 On this panel, you can:
  * Choose another '''Color Scheme''' or set all the colors individually (just click each color).
  * Show/Hide Value and Domain '''Labels''' and also set the '''Domain Label Position'''.
  * Change the chart '''Orientation'''.
  * Show/Hide Axes.
  * Change the line width and color for axes and bars.
  * Increase or reduce the separation between bars (up to 50% of the total chart width).
  * '''Note:''' Other charts provides different options

 1.#13 Check both '''Show Domain Axis''' and '''Show Range Axis''' and apply the graphics again. Now the node chart should look like this:

 {{attachment:BarChartsNode_6_2.png}}

 1. The default domain labels are not very useful, so let's set better labels:

  * On the '''Node Table''' (Table Panel), create a new ''List Column'' of type ''String'' and name it "domain_labels".
  * Edit any of the cells of the created column (double-click it) and type {{{["Bet. Cent.","Closen. Cent","Clust. Coeff.","Topol. Coeff."]}}}.
  * Right-click the same cell and select the option '''Apply to entire column'''.
  {{attachment:BarChartsNetwork_6_3.png}}

  * Open the chart editor again and select the '''Options''' panel.
  * Select "domain_labels" on the '''Domain Labels Column''' drop-down button.
  * Select "Up 45^o^" on the '''Domain Labels Position''' drop-down button. The labels should look like this now:

 {{attachment:BarChartsNode_6_3.png}}

----
Line 425: Line 510:
=== Editing Discrete Mappings ===
Several utility functions are available for Discrete Mappings.  You can use those functions by right clicking anywhere on the ''Visual Mapping Browser'' (shown below.)

{{attachment:VizMapperPopupMenu.png}}
=== Discrete Mappings ===
Several utility functions are available for Discrete Mappings. You can use those functions by right-clicking on any property (shown below.)

{{attachment:MappingValueGenerators.png}}
Line 431: Line 516:
 * '''''Generate Discrete Values''''' - Functions in this menu category are value generators for discrete mappings.  Users can set values for discrete mappings automatically by these functions.
  * '''Rainbow 1''' and '''Rainbow 2''' - These functions try to assign as diverse a set colors as possible for each data value.
   . {{attachment:RainbowExample1.png}}

  * '''Randomize''' - Randomize colors and numbers. If you use this function for numerical values (node size, opacity, etc.) you need to specify a range. For example, if you want to set values from 1 to 100, you need to type ''1-100'' in the dialog.
  * '''Series''' - Set a series of numbers to the specified mapping
.
   . {{attachment:SeriesExample1.png}}

  * '''Fit node size to label''' - This function is only for node width and height. When the node size is ''unlocked'' AND ''Node Width/Height'' discrete mappings are available, you can fit the size of each node to its label automatically by selecting this function.  See the example below:
 * '''Mapping Value Generators''' - Functions in this menu category are value generators for discrete mappings. Users can set values for discrete mappings automatically by these functions.
  * '''Rainbow''' and '''Rainbow OSC''' - These functions try to assign as diverse a set of colors as possible for each data value.
   . {{attachment:RainbowMapper.png}}

  * '''Random Numbers''' and '''Random Colors''' - Randomized numbers and colors.

  * '''Number Series
''' - Set a series of numbers to the specified mapping. Requires a starting number and increment.
   . {{attachment:NumberSeriesNodeSize.png}}

  * '''Fit label width''' - This function is only for node width and height. When the node size is '''unlocked''' AND '''Node Width/Height''' discrete mappings are available, you can fit the size of each node to its label automatically by selecting this function. See the example below:
Line 442: Line 528:
 * '''''Modify Discrete Values''''' - Currently, this is only for colors. You can change overall brightness for discrete color mappings.
Line 445: Line 529:
You can set multiple values at once.  First, you need to select rows in which you want to change values then select ''Edit all selected rows...'' under ''Edit'' right-click menu. A dialog pops up and you can enter the new value for the selected rows.

==== Visual Property Dependencies ====
The fourth tab in the Default Editor is the list of available ''Visual Property Dependencies''. A Visual Property Dependency can be established between different visual properties. Currently there are three dependencies: '''Lock Node with and height''', '''Edge color to arrows''', and '''Fit Custom Graphics to node'''.

{{attachment:DefaultEditorPanelDependencies.png}}

* '''Lock Node with and height''' - If this menu item is checked, ''Node Width'' and ''Node Height'' mappings are ignored and ''Node Size'' overrides them.  If you want to use ''Fit node size to label'' function, you need to unlock this.
 * '''Edge color to arrows''' - If this menu item is checked then ''Edge Source Arrow Color'' and ''Edge Target Arrow Color'' are overridden and ''Edge Color'' is used in both cases.
 * '''Fit Custom Graphics to node''' - If a Custom Graphics is assigned to a node and this option is enabled, Custom Graphics will be resized to fit in the node.
You can set multiple values at once. First, you need to select rows in which you want to change values then right-click and select '''Edit → Edit Selected Discrete Mapping Values'''. A dialog pops up and you can enter the new value for the selected rows.

==== Property Dependencies ====
A Property Dependency can be established between different properties. Currently there are two dependencies: '''Lock node width and height''' (available in the '''Node''' tab) and '''Edge color to arrows''' (available in the '''Edge''' tab).

 * '''Lock Node with and height''' - If this menu item is checked, '''Node Width''' and '''Node Height''' mappings are ignored and '''Node Size''' overrides them. If you want to use the '''Fit label width''' function, you need to unlock this.
 * '''Edge color to arrows''' - If this menu item is checked then '''Source Arrow Color''' and '''Target Arrow Color''' for edges are overridden and '''Edge Color''' is used in both cases. 
Line 457: Line 538:
There are three kinds of Continuous Mapping Editors.  Each of them are associated with a specific visual attributes:
||'''''Editor Type''''' ||'''''Supported Data Type''''' ||'''''Visual Attributes''''' ||
There are three kinds of '''Continuous Mapping Editors'''. Each of them are associated with a specific properties:
||'''Editor Type''' ||'''Supported Data Type''' ||'''Properties''' ||
Line 467: Line 548:
Each editor has a common section named '''''Range Setting'''''.

 1. '''Handle Value Box''' - This box displays current value for selected slider handle. Also you can directly type value in this box to move the slider to an exact location.
 1. '''Min/Max Button''' - Set the overall range of this editor.  First time you open the editor, the ''Min'' and ''Max'' values are set by the range of attribute you selected, i.e., minimum and maximum value of the attribute will be set to the range of this editor. You can change this range anytime you want by pressing this button.
Each editor has a common section named '''Range Setting'''.

 1. '''Handle Value Box''' - This box displays the current value for the selected slider handle. You can also directly type the value in this box to move the slider to an exact location.
 1. '''Min/Max Button''' - Set the overall range of this editor. The first time you open the editor, the ''Min'' and ''Max'' values are set by the range of the data column you selected, i.e., minimum and maximum value of the column will be set to the range of this editor. You can change this range anytime you want by pressing this button.
Line 472: Line 553:
 1. '''Delete Handle Button''' - Delete selected handle from the slider widget.  1. '''Delete Handle Button''' - Delete the selected handle from the slider widget.
Line 478: Line 559:
The Gradient Editor is an editor for creating continuous mappings for colors.  To change the color of each region, just double click the handles (small triangles on the top).  A Color gradient will be created only when the editor has two or more handles (see the example below).
||1 Slider (No Graient) ||2 Sliders ||
The Gradient Editor is an editor for creating continuous mappings for colors. To change the color of each region, just double-click the handles (small triangles on the top). A Color gradient will be created only when the editor has two or more handles (see the example below).
||1 handle (no gradient) ||2 handles ||
Line 481: Line 562:

Line 488: Line 567:
The Continuous-Continuous Editor is for creating mappings between numerical attributes and numerical visual properties (size/opacity).  To change the value assigned on Y-axis (the visual property shown in the example above is node size), drag the red squares or double click on the squares to directly type an exact value. The Continuous-Continuous Editor is for creating mappings between numerical data and numerical properties (size/opacity). To change the value assigned on the Y-axis (the property shown in the example above is node size), drag the red squares or double-click on the squares to directly type an exact value.
Line 493: Line 572:
The Continuous-Discrete Editor is used to create mappings from numerical attribute values to discrete visual properties, such as font, shape, or line style. To edit a value for a specific region, double click on the icon on the track.

== Managing Visual Styles ==
All Cytoscape Visual Style settings are initially loaded from a a default file called {{{vizmap.props}}} that cannot be altered by users. When users make changes to the visual properties, a {{{vizmap.props}}} file is saved in the session file. This means that if you save your session, you will not lose your visual properties. No other {{{vizmap.props}}} files are saved during normal operation.

=== Saving Visual Styles ===
Visual styles are automatically saved with the session they were created in. Before Cytoscape exits, you will be prompted to make sure you save the session before quitting. It is also possible to save your visual styles in a file separate from the session file. To do this, navigate to the File → Export → Vizmap Property File menu option and save the properties as a file. This feature can be used to share visual styles with other users.

=== Importing Visual Styles ===
To import existing visual styles, navigate to the File → Import → Vizmap Property File menu option and select a {{{vizmap.props}}} file. Imported properties will supplement existing properties or override existing properties if the properties have the same name. You can also specify a visual properties file using the -V command line option ({{{cytoscape.sh -V myVizmap.props}}}). Visual properties loaded from the command line will override any default properties.

=== Default Visual Styles ===
It is possible to change the default visual properties for all sessions of Cytoscape. To do this, navigate to the Edit → Preferences → Properties... menu option, check the "Make Current Visual Styles Default" box in the Default Visual Styles section, and click the OK button. This will save the current visual styles as a {{{vizmap.props}}} file to your {{{CytoscapeConfiguration}}} directory (found in your home directory). These visual styles will then be loaded each time Cytoscape is started.

== Bypassing Visual Styles ==
Cytoscape has a feature that allows users to override visualizations created by the !VizMapper for individual nodes and edges. This feature is available by right-clicking on a node or edge and then clicking on the '''Bypass Visual Style''' menu.

 . {{attachment:VizmapBypass26.png}}

Each visual property of the node or edge is displayed. When a property is overridden, a lock icon {{attachment:LockIcon.png}} appears next to the property and '''Clear'''/ '''Edit Bypass''' menu options appear. By clicking this Clear option, the bypass will be removed and the attribute will be displayed as defined by the !VizMapper. At the bottom of the menu a '''Reset All''' option appears. When clicked, this will remove all bypasses for the specified node or edge. In the example above, you can see the selected node size, color, and shape have been overridden. This is apparent in the appearance of the node itself and by the check marks in the popup menu.

It is important to realize that the Visual Mapping Bypass only works for individual nodes and edges and not for all nodes or edges of a specific type. Using the bypass function is not particularly resource intensive, you can use it as much as you like. However, if you find yourself repeating the same bypasses, then you should consider using the !VizMapper instead.

Bypass is accomplished using special attributes with names like {{{node.fillColor}}} and {{{node.shape}}}. These are normal Cytoscape attributes and can be seen and edited in the Data Panel. The value of the attribute is a string representation of a property. For example, color is represented by 3 integers representing the RGB (red, green, blue) value of the color. Different types of properties have different string representations. When in doubt, just use the right click menu to create valid attribute values.

Because bypass values are specified using normal attributes, these attributes will persist between sessions only as long as you save your session. If you don't save your session, you will lose whatever bypass values you set.

== Visual Property Dependencies ==
In some cases, you want to use the same value for multiple Visual Properties. For example, if you want to use same value for Node Width and Node Height, you wan use '''''Visual Property Dependency''''' feature in VizMapper. Currently, Cytoscape supports the following three Visual Property Dependencies:

 * Edge Color to Arrows - Assign same color for edge and arrows.
 * Fit Custom Graphics to Node - Adjust the size of Custom Graphics based on Node Size.
 * Lock Node Width and Height - Assign same value to Node Width and Height.

==== Example: Unlocked ====
{{attachment:Unlocked.png}}

==== Example: Locked ====
{{attachment:Locked.png}}

The Continuous-Discrete Editor is used to create mappings from numerical column values to discrete properties, such as font, shape, or line style. To edit a value for a specific region, double click on the icon on the track.

== Managing Styles ==
All Cytoscape Style settings are initially loaded from a default file that cannot be altered by users. When users make changes to the properties, a {{{session_syle.xml}}} file is saved in the session file. This means that if you save your session, you will not lose your properties. No other style files are saved during normal operation.

=== Saving Styles ===
Styles are automatically saved with the session they were created in. Before Cytoscape exits, you will be prompted to make sure you save the session before quitting. It is also possible to save your styles in a file separate from the session file. To do this, navigate to the '''File → Export → Style...''' menu option and save the properties as a file. This feature can be used to share styles with other users.

You can also change the default list of styles for all future sessions of Cytoscape. To do this, click the '''Options''' {{attachment:OptionsDropDown.png}} drop-down in the Style section, and select '''Make Current Styles Default'''. This will save the current styles as a {{{default_vizmap.xml}}} file to your {{{CytoscapeConfiguration}}} directory (found in your home directory). These styles will then be loaded each time Cytoscape is started.

==== Style File Formats ====
The Cytoscape-native Style format is Style XML. If you want to share Style files with other Cytoscape users, you need to export them to this format.

From version 3.1.0 on, Cytoscape can export [[http://cytoscape.github.io/cytoscape.js/#style|Cytoscape.js]] compatible JSON file. Since Cytoscape.js is an independent JavaScript library, and there are some differences between Cytoscape and Cytoscape.js, not all properties are mapped to JSON. The following properties are not supported by the exporter:

 * Custom Graphics and their locations
 * Edge Bends
 * Nested Networks
 * Network Background (Note: This can be set manually as standard CSS in Cytoscape.js)

The Continuous-Discrete Editor is used to create mappings from numerical data values to discrete properties, such as font, shape, or line style. To edit a value for a specific region, double-click on the icon on the track.

=== Importing Styles ===
To import existing styles, navigate to the '''File → Import → Style...''' menu option and select a {{{styles.xml}}} (Cytoscape 3 format) file. Imported properties will supplement existing properties or override existing properties if the properties have the same name. You can also specify a style file using the -V command line option. Properties loaded from the command line will override any default properties. Note that legacy {{{.props}}} files can only be loaded via the '''File → Import → Style...''' menu option, but not by command line.

What are Styles?

One of Cytoscape's strengths in network visualization is the ability to allow users to encode any table data (name, type, degree, weight, expression data, etc.) as a property (such as color, size of node, transparency, or font type) of the network. A set of these encoded or mapped table data sets is called a Style and can be created or edited in the Style panel of the Control Panel. In this interface, the appearance of your network is easily customized. For example, you can:

Specify a default color and shape for all nodes.

  • NodeShape.png

Set node sizes based on the degree of connectivity of the nodes. You can visually see the hub of a network...

  • DegreeSize.png

...or, set the font size of the node labels instead.

  • DegreeLabelSize.png

Visualize gene expression data along a color gradient.

  • ColorGradient.png

Encode specific physical entities as different node shapes.

  • NodeShapeMapping.png

Use specific line types to indicate different types of interactions.

  • edge_types.png

Control edge transparency (opacity) using edge weights.

  • OpacityForEdges.png

Control multiple edge properties using edge score.

  • MultipleEdgeMapping.png

Browse extremely-dense networks by controlling the opacity of nodes.

  • OpacityForNodesAndEdges.png

Show highly-connected region by edge bundling and opacity.

  • Bundling.png

Add photo/image/graphics on top of nodes.

  • CustomGraphics1.png CustomGraphics4.png CustomGraphics5.png

Cytoscape 3 has several sample styles. Below are a few examples of these applied to the galFiltered.sif network :

default_style.png solid_style.png ripple_style.png universe_style.png

Introduction to the Style interface

The Style interface is located under the Style panel of the Control Panel.

  • StylesInterface.png

This interface allows you to create/delete/view/switch between different styles using the Current Style options. The panel displays the mapping details for a given style and is used to edit these details as well.

  • At the top of the interface, there is a drop-down menu for selecting a pre-defined style. There is also an Options drop-down with options to rename, remove, create and copy a Style, and an option to create a legend for the selected Style.

  • The main area of the interface is composed of three tabs, for Node, Edge and Network.
  • Each tab contains a list of properties relevant to the current style. At the top of the list a Properties drop-down allows you to add additional properties to the list.

  • Each property entry in the list has 3 columns:
    • The Default Value shows just that, the default value for the property. Clicking on the Default Value column for any property allows you to change the default value.

    • Mapping displays the type of mapping currently in use for the property. Clicking on the Mapping column for any property expands the property entry to show the interface for editing the mapping. Details on the mapping types provided here.

    • Bypass displays any style bypass for a selected node or edge. Note that a node/edge or subset of nodes/edges must be selected to activate the Bypass column. Clicking on the Bypass column for selected node(s)/edge(s) allows you to enter a bypass for that property for selected node(s)/edge(s).

The Default Value is used when no mapping is defined for a property, or for nodes/edges not covered by a mapping for a particular property. If a Mapping is defined for a property, this defines the style for all or a subset of nodes/edges, depending on how the mapping is defined. A Bypass on a specific set of nodes/edges will bypass and override both the default value and defined mapping.

Introduction to Style

The Cytoscape distribution includes several predefined styles to get you started. To examine a few styles, try out the following example:

Step 1. Load some sample data

  • Load a sample session file: From the main menu, select File → Open..., and select the file sampleData/galFiltered.cys.

  • The session file includes a network, some annotations, and sample styles. By default, the style galFiltered Style is selected. Gene expression values for each node are colored along a color gradient between blue and yellow (where blue represents a low expression ratio and yellow represents a high expression ratio, using thresholds set for the gal1RGexp experiment bundled with Cytoscape in the sampleData/galExpData.csv file). Also, node size is mapped to the degree of the node (number of edges connected to the node) and you can see the hubs of the network as larger nodes. See the sample screenshot below:

  • galFilteredSessionDefault.png

Step 2. Switch between different styles

You can change the style by making a selection from the Current Style drop-down list, found at the top of the Style panel.

For example, if you select Sample1, a new style will be applied to your network, and you will see a white background and round blue nodes. If you zoom in closer, you can see that protein-DNA interactions (specified with the label "pd") are drawn with dashed edges, whereas protein-protein interactions (specified with the label "pp") are drawn with solid edges (see sample screenshot below).

  • VizMapperSample1Style26.png

Finally, if you select Solid, you can see the graphics below:

  • VizMapperSolidStyle.png

This style does not have mappings except node/edge labels, but you can modify the network graphics by editing the Default Value for any property.

Additional sample styles are available in the sampleStyles.xml file in the sampleData directory. You can import the sample file from File → Import → Styles....

List of Node, Edge and Network Properties

Cytoscape allows a wide variety of properties to be controlled. These are summarized in the tables below.

Node Properties

Description

Border Line Type

The type of line used for the border of the node.

Border Transparency

The opacity of the color of the border of the node. Allows for transparency.

Border Width

The width of the node border.

Label

The text used for the node label.

Label Font Face

The font used for the node label.

Label Font Size

The size of the font used for the node label.

Label Position

The position of the node label relative to the node.

Label Transparency

The transparency of the color of the node label. Allows for transparency.

Label Width

The maximum width of the node label. If the node label is wider than the specified width, Cytoscape will automatically wrap the label on space characters. Cytoscape will not hyphenate words, meaning that if a single word (i.e. no spaces) is longer than maximum width, the word will be displayed beyond the maximum width.

Nested Network Image Visible

A boolean value that indicates whether a nested network should be visualized (assuming a nested network is present for the specified node).

Paint > Paint

The color of the node.

Paint > Border Paint

The color of the border of the node.

Paint > Custom Graphics 1-9

A user-defined custom graphic that is displayed on the node.

Paint > Custom Graphics Position 1-9

The position of each custom graphic.

Paint > Fill Color

The color of the node.

Paint > Label Color

The color of the node label.

Paint > Selected Paint

The color of the node when selected.

Shape

The shape of the node.

Size > Size

The size of the node. Width and height will be equal. This property is mutually exclusive of Node Height and Node Width.

Size > Custom Graphics Size 1-9

A user-defined custom graphic size that is displayed on the node.

Size > Height

The height of the node. Height will be independent of width. This property is mutually exclusive of Node Size.

Size > Width

The width of the node. Width will be independent of height. This property is mutually exclusive of Node Size.

Size > Fit Custom Graphics to node

Toggle to fit Custom Graphics size to node size.

Size > Lock node width and height

Toggle to ignore Width and Height, and to use Size for both values.

Tooltip

The text of the tooltip that appears when a mouse hovers over the node.

Transparency

The opacity of the color of the node. Zero means totally transparent, and 255 is most opaque.

Visible

Node is visible or not. By default, this value is set to true.

X Location

X location of the node. Default value of this will be ignored. The value will be used only when mapping function is defined.

Y Location

Y location of the node. Default value of this will be ignored. The value will be used only when mapping function is defined.

Z Location

Z location of the node. Default value of this will be ignored. The value will be used only when mapping function is defined.

Edge Properties

Description

Bend

The edge bend. Defines how the edge is rendered. Users can add multiple handles to define how to bend the edge line.

Curved

If Egde Bend is defined, edges will be rendered as straight or curved lines. If this value is set to true, edges will be drawn as curved lines.

Label

The text used for the edge label.

Label Font Face

The font used for the edge label.

Label Font Size

The size of the font used for the edge label.

Label Transparency

The opacity of the color of the edge label. Allows for transparency.

Line Type

The type of stoke used to render the line (solid, dashed, etc.)

Paint > Paint

The color of the edge.

Paint > Color (Selected) > Color (Selected)

The color of the edge.

Paint > Color (Selected) > Source Arrow Selected Paint

The selected color of the arrow on the source node end of the edge.

Paint > Color (Selected) > Stroke Color (Selected)

The color of the edge when selected.

Paint > Color (Selected) > Target Arrow Selected Paint

The selected color of the arrow on the target node end of the edge.

Paint > Color (Unselected) > Color (Unselected)

The color of the edge.

Paint > Color (Unselected) > Source Arrow Unselected Paint

The color of the arrow on the source node end of the edge.

Paint > Color (Unselected) > Stroke Color (Unselected)

The color of the edge.

Paint > Color (Unselected) > Target Arrow Unselected Paint

The color of the arrow on the target node end of the edge.

Paint > Label Color

The color of the edge label.

Source Arrow Shape

The shape of the arrow on the source node end of the edge.

Target Arrow Shape

The shape of the arrow on the target node end of the edge.

Tooltip

The text of the tooltip that appears when a mouse hovers over the edge.

Transparency

The opacity of the color of the edge. Allows for transparency.

Visible

Edge is visible or not. By default, this value is set to true.

Width

The width of the line.

Network Properties

Description

Background Paint

The background color of the network view.

Center X Location

The X location of network view center.

Center Y Location

The Y location of network view center.

Edge Selection

Edges are selectable or not. If this is false, users cannot select edges.

Node Selection

Nodes are selectable or not. If this is false, users cannot select nodes.

Scale Factor

The zoom level of the network view.

Size > Size

The size of the network view.

Size > Height

The height of the network view.

Size > Width

The width of the network view.

Title

The title of the network view.

Available Shapes and Line Styles

Available Shapes and Line Styles

Sample

Node Shapes

NodeShapeOptions.png

Line Types

BorderLineOptions.png

Arrow Shapes

ArrowShapeOptions.png

How Mappings Work

For each property, you can specify a default value or define a dynamic mapping. Cytoscape currently supports three different types of mappings:

  1. Passthrough Mapping

    • The values of network column data are passed directly through to properties. A passthrough mapping is typically used to specify node/edge labels. For example, a passthrough mapping can label all nodes with their common gene names.
  2. Discrete Mapping

    • Discrete column data are mapped to discrete properties. For example, a discrete mapping can map different types of molecules to different node shapes, such as rectangles for gene products and ellipses for metabolites.
  3. Continuous Mapping

    • Continuous data are mapped to properties. Depending on the property, there are three kinds of continuous mapping:
      1. Continuous-to-Continuous Mapping: for example, you can map a continuous numerical value to node size.

      2. Color Gradient Mapping: This is a special case of continuous-to-continuous mapping. Continuous numerical values are mapped to a color gradient.

      3. Continuous-to-Discrete Mapping: for example, all values below 0 are mapped to square nodes, and all values above 0 are mapped to circular nodes.

    • However, note that there is no way to smoothly morph between circular nodes and square nodes.

The table below shows mapping support for each property.

Legend

Symbol

Description

-

Mapping is not supported for the specified property.

+

Mapping is fully supported for the specified property.

o

Mapping is partially supported for the specified property. Support for “continuous to continuous” mapping is not supported.

Node Mappings

Node Property

Passthrough Mapping

Discrete Mapping

Continuous Mapping

Color

Fill Color

+

+

+

Transparency

+

+

+

Border Paint

+

+

+

Border Transparency

+

+

+

Label Color

+

+

+

Label Transparency

+

+

+

Numeric

Size/Width/Height

+

+

+

Label Font Size

+

+

+

Border Width

+

+

+

Label Width

+

+

+

Other

Border Line Type

+

+

o

Shape

+

+

o

Label

+

+

o

Tooltip

+

+

o

Label Font Face

+

+

o

Label Position

o

+

o

Nested Network Image Visible

+

+

o

Edge Mappings

Edge Properties

Passthrough Mapping

Discrete Mapping

Continuous Mapping

Color

Color

+

+

+

Transparency

+

+

+

Target Arrow Color

+

+

+

Source Arrow Color

+

+

+

Label Color

+

+

+

Label Transparency

+

+

+

Numeric

Width

+

+

+

Label Font Size

+

+

+

Label Width

+

+

+

Other

Line Type

+

+

o

Source Arrow Shape

+

+

o

Target Arrow Shape

+

+

o

Label

+

+

o

Tooltip

+

+

o

Label Font Face

o

+

o

Text Passthrough Mapping

In Cytoscape 2.8.0 and later versions, the Passthrough Mapping can recognize some text representations of values. This means, if you have a string column named Node Size Values, you can directly map those values as the Node Size by setting Node Size Values as controlling column with Node Size Passthrough mapping. The following value types are supported:

  • Color: Standard color names supported by all browsers or RGB representation in hex

  • Numerical Values: Automatically mapped to the specified property.
  • Custom Graphics: URL String. If the URL is valid and an actual image data exists there, Cytoscape automatically downloads the image and maps it to the node.

Examples
  1. Color Passthrough Mapping
    • ColorPassthrough.png colorPt2.png

  2. Node Size Passthrough Mapping
    • SizePassthrough.png sizePt2.png

  3. Custom Graphics Passthrough Mapping
    • CustomGraphicsPassthrough.png cglorPt2.png

Custom Graphics

For Cytoscape 2.8.0 and later versions, Cytoscape supports Custom Graphics for nodes. Using the Style interface, you can map Custom Graphics to nodes like any other property. Cytoscape has a set of graphics and you can also add your own graphics in the Custom Graphics Manager, as well as remove or modify existing graphics.

Taxonomy Icon set used in this section is created by Database Center for Life Science (DBCLS) and is distributed under Creative Commons License (CC BY 2.1.)

Managing Images with the Custom Graphics Manager

The Custom Graphics Manager is available under View → Open Custom Graphics Manager:

  • cgManager1.png

  • You can add images by drag-and-drop of image files and URLs. If you want to add images from a web browser or local file system, you can drag images from them and drop those images onto the list of images on the left.
    • Note: When you drag and drop images from web browser, make sure that you are actually dragging the URL for the image. In some cases, images are linked to an HTML page or scripts, and in such cases, this drag and drop feature may not work.

  • If you want to add all images in a folder, press the + button on the bottom of the Custom Graphics Manager window.

  • add_custom_graphics.png

  • To remove images from the current session's Custom Graphics library, simply select graphics from the list and press the - button.

  • Images can be resized by defining specific Width and Height information. If the Aspect Ratio box is checked, the width-height ratio is always synchronized. You can resize the image to the original size by pressing Original button.

Using Custom Graphics in Styles

  • CustomGraphicsVizMapper.png CustomGraphicsNodes.png

Custom Graphics is used and defined like any other property, through the Style interface. There are nine Custom Graphics properties.

  • To select a custom graphic, first add the Custom Graphics property to the Properties list in the Style interface (on the Node tab, select Properties → Paint → Custom Paint n → Custom Graphics n). Next, click the Default Value column of the Custom Graphics property to bring up the Graphics dialog. Select an image, a chart or a gradient and then click Apply.

    • By default, custom graphics objects are automatically resized to be consistent with the Node Size property.
  • To remove a custom graphics, click the Remove Graphics button on the Graphics dialog.

  • CustomGraphicsSelector.png

  • Cytoscape provides three kinds of Custom Graphics, selectable via tabs on the Custom Graphics dialog:
    • Images: You can select one of the provided images or add your own (use the Custom Graphics Manager to add more images to the list).

    • Charts: The following chart types are available: BarChartIcon.png Bar , BoxChartIcon.png Box, HeatMapChartIcon.png Heat Map, LineChartIcon.png Line, PieChartIcon.png Pie, RingChartIcon.png Ring.

    • Gradients: You can also set Linear and Radial gradients to nodes.

BarChartEditor.png RadialGradientEditor.png

Custom Graphics Positions

Each custom graphics property is associated with a position. You can edit their positions by using the UI available in the Default Value column for any Custom Graphics Position property.

  • Note: Setting custom graphics positions for Linear or Radial gradients has no effect, as they are always centered on the node.

Z-Ordering

The number that appears with the custom graphics property represents an ordering of layers. Basic node color and shape are always rendered first, then node custom graphics 1, 2, ..., through 9.

Saving and Loading Custom Graphics

In general, saving and loading Custom Graphics is automatic. When you quit Cytoscape, all of the Custom Graphics in the manager will be saved automatically. There are two types of saving:

  1. To session file
    • When you save the current session to a file, the Custom Graphics used in Style will be saved to that file. For example, if you have a style with a discrete mapping for Custom Graphics, all custom graphics used in the style will be saved to the session file. Other graphics will not be saved in your session file. This is because your image library can be huge when you add thousands of images to the Custom Graphics Manager and it takes very long time to save and load the session file.

  2. Automatic saving to CytoscapeConfiguration/images3 directory

    • When you select File → Quit, all of Custom Graphics in the Manager will be saved automatically to your Cytoscape setting directory. Usually, it's YOUR_HOME_DIRECTORY/CytoscapeConfiguration/images3.

In any case, Custom Graphics will be saved automatically to your system or session and will be restored when you restart Cytoscape or load a session.


Styles Tutorials

The following tutorials demonstrate some of the basic Style features. Each tutorial is independent of the others.

Tutorial 1: Create a Basic Style and Set Default Values

The goal of this tutorial is to learn how to create a new Style and set some default values.

  1. Load a sample network. From the main menu, select File → Import → Network → File..., and select sampleData/galFiltered.sif.

  2. Create some node/edge statistics by Network Analyzer. Network Analyzer calculates some basic statistics for nodes and edges. From the main menu, select Tools → Network Analyzer → Network Analysis → Analyze Network, and click OK. Once the result is displayed, simply close the window. All statistics are stored as regular table data.

  3. Select the Style panel in the Control Panel.

    StylesInterface.png

  4. Create a new style. Click the Options OptionsDropDown.png drop-down, and select Create New Style. Enter a name for your new style when prompted.

    NewStyle.png

Since no mappings are set up yet, only default values are defined for some of the properties. From this panel, you can create node/edge mappings for all properties.

  1. Change the default node color and shape. To set the default node shape to triangles, click the Default Value column for Node Shape. A list of available node shapes will be shown. Select the Round Rectangle icon and click the Apply button. You can edit other default values in the same way. In the example shown below, the node shape is set to Round Rectangle, while the Node Fill Color is set to white. The new Style is automatically applied to the current network, as shown below.

    Tutorial1-final.png

Tutorial 2: Creating a New Style with a Discrete Mapping

Now you have a network with new Style. The following section demonstrates how to create a new style using a discrete mapping. The goal is to draw protein-DNA interactions as dashed lines, and protein-protein interactions as solid lines.

  1. Choose a property. In the Edge tab of the Style panel, find the Stroke Color (Unselected) property.

  2. Choose a data column to map to. Expand the entry for Stroke Color (Unselected) by clicking the arrow icon to the right. Click the Column entry and select "interaction" from the drop-down list that appears.

  3. Choose a mapping type. Under Mapping Type, select Discrete Mapping. All available column values for "interaction" will be displayed, as shown below.

    DiscreteMapper.png

  4. Set the mapping relationship. Click the empty cell next to "pd" (protein-DNA interactions). On the right side of the cell, click on the ... button that appears. A popup window will appear; select green or similar, and the change will immediately appear on the network window.

    EdgeColorTut2.png

Repeat step 4 for "pp" (protein-protein interactions), but select a darker color as edge stroke color. Then repeat steps 3 through 4 for the Edge Line Type property, by selecting the correct line style ("Dash" or "Solid") from the list.

Now your network should show "pd" interactions as dashed green lines and "pp" interactions as solid lines. A sample screenshot is provided below.

Tutorial2-final.png

Tutorial 3: Creating a New Style with a Continuous Mapping

At this point, you have a network with some edge mappings. Next, let's create mappings for nodes. The following section demonstrates how to create a new style using a continuous mapping. The goal is to superimpose node statistics (in this example, node degree) onto a network and display it along a color gradient.

  1. Choose a property. In the Node tab of the Style panel, find the Fill Color property.

  2. Choose a node table column. Expand the entry for Fill Color by clicking the arrow icon to the right. Click the Column entry and select "Degree" from the drop-down list that appears.

  3. Choose a mapping type. Set the "Continuous Mapping" option as the Mapping Type. This automatically creates a default mapping.

    DefaultContinous.png

  4. Define the points where colors will change. Double-click on the black-and-white gradient rectangle next to Current Mapping to open the Color Gradient Mapping. Note the two smaller triangles at the top of the gradient.

    DefaultColorGradient.png

  5. Define the colors between points. Double-click on the larger leftmost triangle (facing left) and a color palette will appear. Set the color white and repeat for the smaller left-side triangle. For the triangle at the right, set its color to green and then choose the same green color for the smaller right-side triangle.

    GreenWhiteGradient.png

The color gradients will immediately appear on the network. All nodes with degree 1 will be set to white, and all values between 1 and 18 will be painted with a white/green color gradient. A sample screenshot is below.

  • Tutorial3-final.png

  • Repeat for other properties. You can create some more mappings for other numeric table data. For example, edge data table column "EdgeBetweenness" is a number, so you can use it for continuous mapping. The following is an example visualization by mapping Edge Width to "EdgeBetweenness".

    Tutorial3-EdgeThickness.png

Tutorial 4: How to Use Utilities for Discrete Mapping

The following tutorial demonstrates utilities for editing discrete mappings. The goal of this section is learning how to set and adjust values for discrete mappings automatically.

  1. Switch the Current Style to Minimal. Now your network looks like the following:

    Minimal.png

  2. Create a discrete Node Color mapping. Select "AverageShortestPathLength" (generated by Network Analyzer) as the controlling property.

  3. Click the Fill Color cell, then right-click it and select Mapping Value Generators → Rainbow. Cytoscape will automatically generate different colors for different property values as shown below:

    RainbowDiscreteMapping.png

  4. Create a discrete Node Label Font Size mapping. Select "AverageShortestPathLength" as controlling property.

  5. Click the Node Label Font Size cell, then right-click it and select Mapping Value Generators → Number Series. Type 3 for the first value and click OK. Enter 3 for increment.

  6. Apply Layout → yFiles Layouts → Organic. The final view is shown below:

    Tutorial4-final.png

This mapping generator utility is useful for categorical data. The following example is created by adding node color discrete mapping from species column to color.

  • tutorial4_sample.png

Tutorial 5: Using Custom Graphics in Styles

This tutorial is a quick introduction to Custom Graphics feature. You can assign up to nine images per node as a part of a Style.

  1. In this first example, we will use the presets that Cytoscape 3 has. In general, you can use any type of bitmap graphics. Custom images should be added to the Custom Graphics Manager before using them in a Style.

  2. If you are continuing from the previous tutorials, skip to the next step. Otherwise, load a network and run the Network Analyzer (Tools → Network Analyzer → Network Analysis → Analyze Network). This creates several new table columns (statistics for nodes and edges).

  3. Click the Style panel in the Control Panel, and select the Solid style.

  4. Under Properties, add Custom Graphics 1 from Paint → Custom Paint 1 → Custom Graphics 1.

  5. In the Default Value cell of the Custom Graphics 1 entry, click to open the Graphics dialog, and select any of the custom graphics from the list.

  6. In the Default Value cell of Transparency, set the value to zero.

  7. Set the Default Value of node Size to 80. Also change the edge width to 6 and the node label font size to 10, to increase readability.

  8. Press Apply. Now your network looks like the following:

    CustomGraphicsNodes.png

  9. Open the Custom Graphics Manager under View → Open Custom Graphics Manager. Drag and Drop this sampleImage.png icon to the image list which automatically adds it to the manager.

    cgTutorial4.png

  10. Create a continuous mapping for Node Custom Graphics 2. Select "BetweennessCentrality" as controlling property. In the Continuos Mapping Editor, add a handle position by clicking in the Add button, and move the handle to 0.2. Double-click the region over 0.2 and set the new icon you have just added in the last step.

    cgTutorial5.png

  11. Press Apply. Under Properties, add Custom Graphics Position 2 from Paint → Custom Paint 2 → Custom Graphics Position 2. Change the Default Value and move the position of the graphics to upper left.

    cgTutorial6.png

  12. Press Apply. Now the important nodes in the network (nodes with high betweenness centrality) are annotated with the icon.

    CustomGraphicsNodes2.png

Tutorial 6: Creating Node Charts

The goal of this tutorial is learning how to create and customize node charts from data stored in the Node tables.

  1. Start a new session and load a sample network. From the main menu, select File → Import → Network → File..., and select sampleData/galFiltered.sif.

  2. Create some node/edge statistics by Network Analyzer. Network Analyzer calculates some basic statistics for nodes and edges. From the main menu, select Tools → Network Analyzer → Network Analysis → Analyze Network, and click OK. Once the result is displayed, simply close the window. All statistics are stored as regular table data.

  3. Select the Style panel in the Control Panel.

  4. Create a new style. Click the Options OptionsDropDown.png drop-down, and select Create New Style. Enter a name for your new style when prompted.

  5. Add Custom Graphics 1 to the properties list. Click Properties and select Paint → Custom Paint 1 → Custom Graphics 1.

  6. In the Default Value cell of the Custom Graphics 1 property entry, click to open the Graphics dialog.

  7. Click the Charts tab and make sure the Bar Chart option is selected.

    BarChartPanel_6_1.png

  8. Select data columns. Now you have to choose the columns in the Node table that contains the data you want to be displayed as charts. The Available Columns list displays all node columns that can be used as chart data (i.e. single or list columns of numerical types).

    • First click the Remove All button to remove the current selected columns (by default, Cytoscape selects the first column in the Available Columns list).

      BarChartPanel_6_2.png

    • Now select all centrality and coefficient columns from Available Columns list and click the Add Selected button.

      BarChartPanel_6_3.png

  9. Click the Apply button to create bar charts with the selected data columns and default options.

    BarChartPanel_6_4.png BarChartsNetwork_6_1.png

  10. The network view doesn't look so good yet, so let's make a few changes to its Style before we continue. In the example shown below, the node Shape is set to Rectangle, while the node Fill Color is set to white. It's also a good idea to apply another layout (e.g. select Layout → yFiles Layouts → Organic).

    BarChartsNetwork_6_2.png

  11. Focus on one node to see the chart details. For example search for and then focus on node "YMR043W".

    BarChartsNode_6_1.png

  12. Change other chart options. Click the Default Value cell of the Custom Graphics 1 property again in order to open the Graphics dialog and then select the Options tab on the Bar Chart editor.

    BarChartPanel_6_5.png
    On this panel, you can:

    • Choose another Color Scheme or set all the colors individually (just click each color).

    • Show/Hide Value and Domain Labels and also set the Domain Label Position.

    • Change the chart Orientation.

    • Show/Hide Axes.
    • Change the line width and color for axes and bars.
    • Increase or reduce the separation between bars (up to 50% of the total chart width).
    • Note: Other charts provides different options

  13. Check both Show Domain Axis and Show Range Axis and apply the graphics again. Now the node chart should look like this:

    BarChartsNode_6_2.png

  14. The default domain labels are not very useful, so let's set better labels:
    • On the Node Table (Table Panel), create a new List Column of type String and name it "domain_labels".

    • Edit any of the cells of the created column (double-click it) and type ["Bet. Cent.","Closen. Cent","Clust. Coeff.","Topol. Coeff."].

    • Right-click the same cell and select the option Apply to entire column. BarChartsNetwork_6_3.png

    • Open the chart editor again and select the Options panel.

    • Select "domain_labels" on the Domain Labels Column drop-down button.

    • Select "Up 45o" on the Domain Labels Position drop-down button. The labels should look like this now:

    BarChartsNode_6_3.png


Advanced Topics

Discrete Mappings

Several utility functions are available for Discrete Mappings. You can use those functions by right-clicking on any property (shown below.)

MappingValueGenerators.png

Automatic Value Generators

  • Mapping Value Generators - Functions in this menu category are value generators for discrete mappings. Users can set values for discrete mappings automatically by these functions.

    • Rainbow and Rainbow OSC - These functions try to assign as diverse a set of colors as possible for each data value.

      • RainbowMapper.png

    • Random Numbers and Random Colors - Randomized numbers and colors.

    • Number Series - Set a series of numbers to the specified mapping. Requires a starting number and increment.

      • NumberSeriesNodeSize.png

    • Fit label width - This function is only for node width and height. When the node size is unlocked AND Node Width/Height discrete mappings are available, you can fit the size of each node to its label automatically by selecting this function. See the example below:

      • NodeLabelFit.png

Edit Selected Values at Once

You can set multiple values at once. First, you need to select rows in which you want to change values then right-click and select Edit → Edit Selected Discrete Mapping Values. A dialog pops up and you can enter the new value for the selected rows.

Property Dependencies

A Property Dependency can be established between different properties. Currently there are two dependencies: Lock node width and height (available in the Node tab) and Edge color to arrows (available in the Edge tab).

  • Lock Node with and height - If this menu item is checked, Node Width and Node Height mappings are ignored and Node Size overrides them. If you want to use the Fit label width function, you need to unlock this.

  • Edge color to arrows - If this menu item is checked then Source Arrow Color and Target Arrow Color for edges are overridden and Edge Color is used in both cases.

Working with Continuous Mapping Editors

There are three kinds of Continuous Mapping Editors. Each of them are associated with a specific properties:

Editor Type

Supported Data Type

Properties

Color Gradient Editor

Color

node/edge/border/label colors

Continuous-Continuous Editor

Numbers

size/width/opacity

Continuous-Discrete Editor

All others

font/shape/text

Range Setting Panel

RangeSetting26.png

Each editor has a common section named Range Setting.

  1. Handle Value Box - This box displays the current value for the selected slider handle. You can also directly type the value in this box to move the slider to an exact location.

  2. Min/Max Button - Set the overall range of this editor. The first time you open the editor, the Min and Max values are set by the range of the data column you selected, i.e., minimum and maximum value of the column will be set to the range of this editor. You can change this range anytime you want by pressing this button.

  3. Add Handle Button - Add a new handle to the editor.

  4. Delete Handle Button - Delete the selected handle from the slider widget.

  5. Handle Value Editor Button - Edit value assigned to the selected handle.

Gradient Editor

GradientEditorSample26.png

The Gradient Editor is an editor for creating continuous mappings for colors. To change the color of each region, just double-click the handles (small triangles on the top). A Color gradient will be created only when the editor has two or more handles (see the example below).

1 handle (no gradient)

2 handles

OneSlider.png

TwoSliders.png

Continuous-Continuous Editor

C2CEditor26.png

The Continuous-Continuous Editor is for creating mappings between numerical data and numerical properties (size/opacity). To change the value assigned on the Y-axis (the property shown in the example above is node size), drag the red squares or double-click on the squares to directly type an exact value.

Continuous-Discrete Editor

C2DEditor26.png

The Continuous-Discrete Editor is used to create mappings from numerical column values to discrete properties, such as font, shape, or line style. To edit a value for a specific region, double click on the icon on the track.

Managing Styles

All Cytoscape Style settings are initially loaded from a default file that cannot be altered by users. When users make changes to the properties, a session_syle.xml file is saved in the session file. This means that if you save your session, you will not lose your properties. No other style files are saved during normal operation.

Saving Styles

Styles are automatically saved with the session they were created in. Before Cytoscape exits, you will be prompted to make sure you save the session before quitting. It is also possible to save your styles in a file separate from the session file. To do this, navigate to the File → Export → Style... menu option and save the properties as a file. This feature can be used to share styles with other users.

You can also change the default list of styles for all future sessions of Cytoscape. To do this, click the Options OptionsDropDown.png drop-down in the Style section, and select Make Current Styles Default. This will save the current styles as a default_vizmap.xml file to your CytoscapeConfiguration directory (found in your home directory). These styles will then be loaded each time Cytoscape is started.

Style File Formats

The Cytoscape-native Style format is Style XML. If you want to share Style files with other Cytoscape users, you need to export them to this format.

From version 3.1.0 on, Cytoscape can export Cytoscape.js compatible JSON file. Since Cytoscape.js is an independent JavaScript library, and there are some differences between Cytoscape and Cytoscape.js, not all properties are mapped to JSON. The following properties are not supported by the exporter:

  • Custom Graphics and their locations
  • Edge Bends
  • Nested Networks
  • Network Background (Note: This can be set manually as standard CSS in Cytoscape.js)

The Continuous-Discrete Editor is used to create mappings from numerical data values to discrete properties, such as font, shape, or line style. To edit a value for a specific region, double-click on the icon on the track.

Importing Styles

To import existing styles, navigate to the File → Import → Style... menu option and select a styles.xml (Cytoscape 3 format) file. Imported properties will supplement existing properties or override existing properties if the properties have the same name. You can also specify a style file using the -V command line option. Properties loaded from the command line will override any default properties. Note that legacy .props files can only be loaded via the File → Import → Style... menu option, but not by command line.

Cytoscape_3/UserManual/Styles (last edited 2016-04-26 22:17:54 by server2)

Funding for Cytoscape is provided by a federal grant from the U.S. National Institute of General Medical Sciences (NIGMS) of the Na tional Institutes of Health (NIH) under award number GM070743-01. Corporate funding is provided through a contract from Unilever PLC.

MoinMoin Appliance - Powered by TurnKey Linux