
Cytoscape Developer’s Tutorial

Samad Lotia

July 18, 2010

Why a developer’s tutorial?

I Audience: people who want to learn how to program with
Cytoscape

I Assumption: some familiarity with Java and programming in
general. You should know:

I What are classes, interfaces, methods, fields, et cætera
I How to use the Java compiler and Apache Ant build files

I Provide a high level overview of Cytoscape’s API
I Describe specifics on:

I the network,
I attributes,
I the view,
I programming the VizMapper,
I writing tasks,
I using tunables,
I & writing a plugin

I Feel free to ask questions during this presentation

Networks and attributes

I Networks manipulated through cytoscape.CyNetwork

interface

I Attributes manipulated through cytoscape.CyAttributes

interface

I Networks and attributes are decoupled—one can be loaded
without the other

I Networks and attributes are only associated if the attribute’s
key matches the unique identifier of a node, edge, or network

Interfaces versus classes in Java

I When programming with Cytoscape, you’ll mostly be talking
to Cytoscape thru interfaces, not classes

I An interface is somewhat like a C/C++ header file

I Interfaces allow Cytoscape to control how you obtain an
instance

I Ensure that your code isn’t aware of what goes on behind the
scenes in Cytoscapeland

I × CyNetwork myNetwork = new CyNetwork("My

Network");

I
√

CyNetwork myNetwork =

Cytoscape.createNetwork("My Network");

I Clear-cut separation between your code and Cytoscape’s—you
can’t manœuvre into Cytoscape’s code, and Cytoscape can’t
manœuvre into yours

Root graphs and graph perspectives

I All networks loaded in Cytoscape are stored in one super
network called the root graph

I Represented as cytoscape.giny.CytoscapeRootGraph

I A network is merely a subset of the root graph called a graph
perspective

I Represented as CyNetwork, which extends
giny.model.GraphPerspective

I Multiple networks can have the same nodes and edges,
because “networks” are just perspectives of the root graph

Cytoscape API preliminary

I cytoscape.Cytoscape is generally the starting point

I Singleton class—the interesting stuff are public static methods

I Lets you create nodes, edges, and networks and access them

Creating nodes, edges, and networks

I Cytoscape.createNetwork(title)—create an empty
network

I Cytoscape.createNetwork(nodes, edges,

title)—create a network from nodes and edges already
created

I Cytoscape.getCyNode(name, true)—creates a node if a
node doesn’t already exist with that name. The node won’t
be in any network unless explicitly added to the network

I CyNetwork.addNode(node)—add a node made from
getCyNode

I Cytoscape.getCyEdge(source, name, target,

interactionType, true)—creates an edge if it doesn’t
already exist between source and target

I CyNetwork.addEdge(edge)—add an edge made from
getCyEdge

Identifiers in Cytoscape

I IDs of a node, edge, or network never change even if the title
or label changes

I All nodes, edges, and networks of the root graph have two
types of IDs:

I An integer ID
I Used to query the topology of networks
I Unique to the root graph
I Accessable thru GraphPerspective, Node, and Edge

interfaces

I A String ID
I Used for matching attributes to nodes, edges, and networks
I Typically just a string version of the integer
I Accessable thru CyNetwork, CyNode, and CyEdge interfaces

Accessing IDs of nodes, edges, and networks

I CyNetwork.getIdentifier(), CyNode.getIdentifier(),
and CyEdge.getIdentifier()—retrieves String ID (useful
for dealing with attributes)

I CyNode.getRootGraphIndex() and
CyEdge.getRootGraphIndex()—retrieves integer ID (useful
for querying the network topology)

Accessing existing nodes, edges, and networks

I Cytoscape.getCurrentNetwork()—get the network that
has the current focus in the Control Panel

I Cytoscape.getNetwork(title)—retrieve a network based
on its title

I CyNetwork.nodesList()—list of giny.model.Nodes that
can be cast to cytoscape.CyNode &
CyNetwork.nodesIterator()

I CyNetwork.edgesList()—list of giny.model.Edges that
can be cast to cytoscape.CyEdge &
CyNetwork.edgesIterator()

I CyNetwork.getAdjacentEdgeIndicesArray(nodeIndex,

true, true, true)—list of integers that are integer IDs of
edges

Controlling what’s selected

I CyNetwork.setSelectedEdgeState(edge, boolean)

I CyNetwork.setSelectedEdgeState(list of edges,

boolean)

I CyNetwork.setSelectedNodeState(node, boolean)

I CyNetwork.setSelectedNodeState(list of nodes,

boolean)

I CyNetwork.getSelectedEdges()

I CyNetwork.getSelectedNodes()

I CyNetwork.isSelected(edge)

I CyNetwork.isSelected(node)

Network views

I Networks merely store topology information. They do things
like:

I create or remove nodes and edges
I lets you know the connectivity of nodes
I change the selection of nodes or edges (seems kind of

counter-intuitive)

I Network views let you control how a network looks, like:
I Apply a visual style
I Apply a layout algorithm
I (x , y) position of nodes
I The visibility of nodes

I Each node, edge, and network has an associated view

I A window in the Cytoscape Desktop will not show up when
creating a network unless a view is created

Creating a network view

I Cytoscape.createNetworkView(network)

I Cytoscape.createNetworkView(network, title,

layout-algorithm)—a network view can have a different
title from a network

Getting a network view if one already exists

I Cytoscape.getCurrentNetworkView()

I Cytoscape.getNetworkView(title)

Getting node and edge views

I CyNetworkView.getNodeView(node)

I CyNetworkView.getEdgeView(edge)

Changing the appearance of nodes and edges

I NodeView.setXPosition(double)

I NodeView.setYPosition(double)

I CyNetwork.hideNode(node)

I CyNetwork.hideNodes(list of nodes)

I CyNetwork.hideEdge(edge)

I CyNetwork.hideEdges(list of edges)

I CyNetworkView.updateView()—changes you make won’t
be visible until you call this

Layers of Cytoscape API vis-à-vis networks

Network Model Corresponding View

Cytoscape API cytoscape.jar
CyNetwork CyNetworkView
CyNode CyNodeView
CyEdge CyEdgeView

Giny API giny.jar
GraphPerspective GraphView
Node NodeView
Edge EdgeView

Implementation fing.jar ding.jar
FGraphPerspective DGraphView
FNode DNodeView
FEdge DEdgeView

Layers of Cytoscape API vis-à-vis networks

I Giny is a third party API that was originally designed to
provide layout algorithms for Cytoscape thru yFiles

I Giny does not provide any functionality, i.e., implementations
of interfaces

I Giny will go away in Cytoscape 3

I Cytoscape’s API adds additional methods on top of Giny

I The implementation actually provides the functionality in
Cytoscape

I Implementation exists in the fing and ding libraries—this is
apparent in stack traces

What do all those jars in the Cytoscape directory do?

cytoscape.jar core application constituting the public API and the
Swing application

lib core libraries that perform basic functionality like
network rendering; the core application requires these
libraries

plugins much of Cytoscape’s built-in functionality is pulled off
into individual plugins like layout algorithms and the
selection filter; the core doesn’t require these plugins

.cytoscape/2.7/plugins user–installed plugins

I You typically just compile against cytoscape.jar, rarely you
should compile against libraries in the lib directory

Attributes

I As stated before: attributes are only tenuously associated with
network objects by matching the ID of a node, edge, or
network with the attribute’s key

I No guarantees made that an attribute is mapped to a node,
edge, or network

I Attributes have types: booleans, strings, numbers, lists,
maps/dictionaries

I One attribute must have only one type; in other words, all
attributes values under a single attribute must have the same
type

Attributes

I In order to access an attribute value, you must specify:
I the attribute key (which would be the string ID)
I the attribute’s type
I the name of the attribute (the column name)

I Cytoscape can tell you the type of an attribute

Attributes—important caveat

I If there’s a node, edge, or network that has the same ID as
another, it will have the same attributes!

I Direct implication of the decoupled quality of attributes and
of the root graph

I This affects the visual style—two nodes with same ID will
have same visual style even in different networks

Obtaining attributes

I Networks, nodes, and edges each have their own world of
attributes

I Cytoscape.getNetworkAttributes()
I Cytoscape.getNodeAttributes()
I Cytoscape.getEdgeAttributes()

Retrieving attribute values

I CyAttributes.hasAttribute(ID, attribute-name)

I Separate methods for retrieving attribute values for each
attribute type:

I CyAttributes.getBooleanAttribute(ID,

attribute-name)
I CyAttributes.getDoubleAttribute(ID,

attribute-name)
I CyAttributes.getIntegerAttribute(ID,

attribute-name)
I CyAttributes.getListAttribute(ID, attribute-name)
I CyAttributes.getMapAttribute(ID, attribute-name)

I Assuming the wrong attribute type causes the above methods
to return null

I Check the type of the method by calling:
CyAttributes.getType(attribute-name)

Assigning attribute values

I CyAttributes.setAttribute(ID, attribute-name,

value)—only works for strings, integers, doubles, booleans

I CyAttributes.setListAttribute(ID, attribute-name,

list)

I CyAttributes.setMapAttribute(ID, attribute-name,

map)

Looping thru attribute values

I To loop thru each attribute name:
CyAttributes.getAttributeNames()

I To loop thru attribute values of each node in a network:

1. Obtain the node attributes: CyAttributes nodeAttrs =

Cytoscape.getNodeAttributes();

2. Obtain list of Nodes: List nodes =

myCyNetwork.nodesList();

3. Cast each element in the list to a CyNode: CyNode cyNode =

(CyNode) nodes.next();

4. Obtain string ID of node: String id =

cyNode.getIdentifier();

5. Get the node attribute: cyAttrs.getXAttribute(id,

"myAttribute")

Introducing the VizMapper

I The VizMapper takes an attribute and correspondingly
changes the appearance of a node or an edge (“visual
property”)

I It can affect things like
I node shape
I node size
I node & edge color
I node & edge label
I node & edge tooltip

I A “visual style” is a bag of visual properties

A who’s who of interfaces for the VizMapper

VisualMappingManager manages the currently selected visual style
VisualMappingManager manager =

Cytoscape.getVisualMappingManager();

Mapping converts an attribute value into something the
VizMapper can use

Calculator specifies what a Mapping affects—the node shape,
edge tooltip, et cætera

AppearanceCalculator manages the appearance of nodes, edges, or
the global appearance based on Calculators

CalculatorCatalog repository of calculators available to all of
Cytoscape
CalculatorCatalog catalog =

manager.getCalculatorCatalog();

Creating a mapping

I First step in programmatically making a visual style is making
a mapping

I Types of mappings:

Pass Through the result is exactly what the attribute value is
Discrete individually specify the result for each possible

attribute value (equivalent to a Map, where keys
are attribute values, and values are possible
results)

Continuous provide a mathematical function that computes
the result based on the attribute value (example:
f (x) = 2x + 1), only works on numerical
attributes

Creating a pass through mapping

I PassThroughMapping pm = new

PassThroughMapping(default-value,

attribute-name);

I Default value also serves as an indicator to the attribute type
of the result

Creating a discrete mapping

DiscreteMapping disMapping = new

DiscreteMapping(NodeShape.RECT,

ObjectMapping.NODE MAPPING);

disMapping.setControllingAttributeName("attr1",

network, false);

disMapping.putMapValue(new Integer(1),

NodeShape.DIAMOND);

disMapping.putMapValue(new Integer(2),

NodeShape.ELLIPSE);

disMapping.putMapValue(new Integer(3),

NodeShape.TRIANGLE);

Creating a continuous mapping

// Continuous Mapping - set node color

ContinuousMapping continuousMapping = new ContinuousMapping(Color.WHITE,

ObjectMapping.NODE_MAPPING);

continuousMapping.setControllingAttributeName("attr3", network, false);

Interpolator numToColor = new LinearNumberToColorInterpolator();

continuousMapping.setInterpolator(numToColor);

Color underColor = Color.GRAY;

Color minColor = Color.RED;

Color midColor = Color.WHITE;

Color maxColor = Color.GREEN;

Color overColor = Color.BLUE;

// Create boundary conditions less than, equals, greater than

BoundaryRangeValues bv0 = new BoundaryRangeValues(underColor, minColor, minColor);

BoundaryRangeValues bv1 = new BoundaryRangeValues(midColor, midColor, midColor);

BoundaryRangeValues bv2 = new BoundaryRangeValues(maxColor, maxColor, overColor);

// Set the attribute point values associated with the boundary values

continuousMapping.addPoint(0.0, bv0);

continuousMapping.addPoint(1.0, bv1);

continuousMapping.addPoint(2.0, bv2);

Calculator nodeColorCalculator = new BasicCalculator("Example Node Color Calc",

continuousMapping,

VisualPropertyType.NODE_FILL_COLOR);

nodeAppCalc.setCalculator(nodeColorCalculator);

Programmatically creating a visual style

1. Create appearance calculators for nodes, edges, and the global
appearance
NodeAppearanceCalculator nodeAppCalc = new NodeAppearanceCalculator();

EdgeAppearanceCalculator edgeAppCalc = new EdgeAppearanceCalculator();

GlobalAppearanceCalculator globalAppCalc = new GlobalAppearanceCalculator();

2. Create the mapping

3. Create a calculator based on the mapping
Calculator calc = new BasicCalculator("name", mapping, VisualPropertyType.NODE LABEL);

4. Tell the appropriate appearance calculator about the
calculator you made
nodeAppCalc.setCalculator(calc);

5. Create a visual style based on all three appearance calculators
VisualStyle visualStyle = new VisualStyle(name, nodeAppCalc, edgeAppCalc, globalAppCalc);

Setting the visual style

1. Obtain a visual style: VisualStyle vs =

catalog.getVisualStyle(vsName);

2. Assign the visual style to the network view:
networkView.setVisualStyle(vs.getName());

3. Tell the visual mapping manager about the visual style:
manager.setVisualStyle(vs);

4. Redraw the network view:
networkView.redrawGraph(true,true);

Why tasks?

I Allows execution of a piece of code that takes a long time to
complete—seconds to hours

I Gets executed in its own thread so the Cytoscape UI is still
responsive while code is executing

I Provides visual feedback to the user about the progress of the
task in two ways: status messages and a progress bar

I Allows the user to cancel the task
I It is easy to overlook cancellation, but this is vitally important

to providing a good user interface

A who’s who of tasks

Task an interface where you’d write an implementation of
this (Task is analogous to Runnable)

TaskMonitor a class given to your Task so that your task can
communicate its status to the user

I Lets you set the status message, the progress, et
cætera

TaskManager you “submit” your task to the TaskManager, so it’ll
execute your task and manage the UI during your
task’s execution

JTaskConfig a class that lets you specify how you want your task’s
UI

How to write tasks

1. Caveat: make sure to include cytoscape-task.jar (in
Cytoscape’s lib directory) in the classpath to compile

2. Write an implementation of cytoscape.task.Task

3. Create a UI configuration of the task: JTaskConfig config

= new JTaskConfig();

4. Modify config to configure the UI; things that can be
changed are whether to display stuff like:

I A cancel button (a good programmer would always provide
cancellation for tasks)

I A status message
I A time elapsed field
I An estimated time remaining field (typically only useful if your

task is downloading something and the ETA can be accurately
guessed)

5. Execute the task: TaskManager.executeTask(myTask,

config); (this method will only return once the task is
finished)

Example task: Calculation of Pi
π = 4

(
1
1 −

1
3 + 1

5 −
1
7 + 1

9 . . .
)

public class PiCalculator implements Task {

private final int iterations;

public PiCalculator(int iterations) {

this.iterations = iterations;

}

protected double sum = 4.0;

private TaskMonitor taskMonitor = null;

private void cancel = false;

public void run() {

boolean negative = true;

for (int i = 1; (i < iterations) && (!cancel); i++)

{

sum += (negative ? -4.0 : 4.0) / (i * 2.0 + 1.0);

negative = !negative;

if (taskMonitor != null)

taskMonitor.setProgress(i * 100.0 / iterations);

}

}

public void halt() {

cancel = true;

}

public void setTaskMonitor(TaskMonitor taskMonitor) {

this.taskMonitor = taskMonitor;

}

}

Introduction to tunables

I You have an algorithm that takes a series of parameters
I Tunables are an easy way to manage those parameters:

I UI generation for those parameters without having to roll your
own Swing dialog

I Saving those parameters to disk so the user doesn’t have to
re-enter the parameters each time Cytoscape is fired up

I Lets other plugins programmatically modify the parameters

I A Tunable represents a single parameter (a single knob to
configure) that an algorithm says it needs to be specified

I A ModuleProperties represents a collection of Tunables

Types of tunables

I The usual suspects:
I BOOLEAN
I STRING
I INTEGER
I DOUBLE

I The unusual suspects:
I LIST
I NODEATTRIBUTE & EDGEATTRIBUTE
I GROUP

I A tunable can have flags assigned to them, like lists can allow
multiselection or bounds for numerical tunables

Overview of working with tunables

I Create a ModuleProperties: ModuleProperties props =

new ModulePropertiesImpl(property-prefix,

module-name)

I Tell the ModuleProperties about all the tunables you want
by creating a Tunable object and adding it

I Tell the ModuleProperties that you want it to obtain the
tunables’ values from the user: props.updateValues()

I Read in all the tunables’ values

Tunables example

props.add(new Tunable("partition", "Partition graph before layout",

Tunable.BOOLEAN, new Boolean(true)));

props.add(new Tunable("selected_only", "Only layout selected nodes",

Tunable.BOOLEAN, new Boolean(false)));

props.add(new Tunable("defaultSpringCoefficient", "Default Spring Coefficient",

Tunable.DOUBLE, new Double(defaultSpringCoefficient)));

props.updateValues();

Tunables t;

t = props.get("partition");

if ((t != null) && (t.valueChanged() || force))

setPartition(partition.getValue().toString());

t = layoutProperties.get("selected_only");

if ((t != null) && (t.valueChanged() || force))

selectedOnly = ((Boolean) t.getValue()).booleanValue();

t = layoutProperties.get("defaultSpringLength");

if ((t != null) && (t.valueChanged() || force))

defaultSpringLength = ((Double) t.getValue()).doubleValue();

Writing plugins

I All plugins are made up of the following pieces:

1. Your code and a class that extends CytoscapePlugin

2. A plugin.props file that gives basic information about the
plugin

3. An Apache Ant build.xml file that compiles and packages
your code into a jar that can be put into the plugins directory

I Versioning of the plugin must follow this convention otherwise
Cytoscape won’t recognize the plugin:
major-version.minor-version (examples: 1.0, 4.2)

Writing a CytoscapePlugin class

I The constructor of your class that extends CytoscapePlugin

must take no arguments

I Cytoscape will invoke the constructor of this class

I This is the starting invocation of your plugin (analogous to
main)

I Typically most plugins insert one or more menu items; this is
accomplished by:

1. Create a JMenuItem with an action that you want to be
invoked when the menu item is selected

2. Obtain the JMenu into which you want to have your menu
item:
Cytoscape.getDesktop().getCyMenus().getFileMenu()

(More menus are available in CyMenus)
3. Add the menu item to the menu: menu.add(myMenuItem)

Writing a plugin.props file

can’t have whitespace

pluginName=MyPlugin

can have html tags

pluginDescription=Information about the plugin

pluginVersion=1.0

list of versions of Cytoscape plugin is compatible with

cytoscapeVersion=2.5,2.6

pluginCategory=Scripting/Communication

optional properties

projectURL=http://my-lab-site.org/myCytoscapePlugin

pluginAuthorsInstitutions=Sarah and Victor:ISB;Mike, Kei and Peng:UCSD

releaseDate=May 1, 2008

The Apache Ant build.xml file

I Compiling: include cytoscape.jar into your classpath, and
the jars in the lib directory only if you need them

I Creating the jar:
I Manifest must have Cytoscape-Plugin attribute that

specifies class path location of your class that extends
CytoscapePlugin (extremely important)

I plugin.props must be packaged into the same directory as
your class that extends CytoscapePlugin

<target name="jar" description="Create MyPlugin jar file" depends="compile">

<copy file="${basedir}/plugin.props" todir="{$classes.dir}/my/package" />

<jar destfile="${build.dir}/MyPlugin.jar">

<manifest>

<attribute name="Cytoscape-Plugin"

value="my.package.MyPlugin" />

</manifest>

<fileset dir="${classes.dir}" />

</jar>

</target>

I Once your jar file is ready, you can copy it to the plugins

directory to test it out, share it with others, or upload it to the
Cytoscape website to make it available in the Plugin Manager

Shout-outs

I Thanks to Scooter Morris for providing his slides, and Gary
Bader for the plugin tutorial on the Cytoscape Wiki

	Introduction
	Networks and attributes

