
Cytoscape 3, OSGi, and
Spring Framework

Keiichiro Ono
University of California, San Diego

Cytoscape Core Developer

C

1

Outline

• Dependency Injection

• What is Spring Framework?

• OSGi and Spring

• Integration to Cytoscape 3

2

Dependency Injection

3

Dependency Injection (DI)

A Design Pattern to achieve:

✓Separate configuration from use

✓Low Coupling

✓Easy unit testing

4

Why DI? (1)

• Cytoscape 3 will be an expandable, and UI-
independent platform

• Desktop application, Web application,
or Web Service

• Plugins interact to each other to build
complex services/functions

5

Why DI? (2)

• OSGi solves:

• Library dependency/conflict problem

➡ Important for applications with plugin
architecture

• Dynamic loading problem

• Modularity

• Interface-Based Design (Service
Framework)

6

Why DI? (3)

• Remaining Issues

• How can we make Cytoscape re-
configurable?

• From Desktop to Sever Backend

• How can we manage instances of
components

➡ DI Pattern helps to solve these problems

7

DI

• Relationships between components are
separated from objects themselves

• Components are communicating through
interfaces, not concrete classes

8

Example

• Class DISample has a private field called
attr, which is a CyAttribute Object

• Need a new instance for the field

9

Example: Without DI
public class DISample {
	 private CyAttribute attr;
	 public DISample() {
	 	 this.attr = new CyAttributesImpl();
	 }
	
	 public void doSomething(String key, String value) {
	 	 attr.setStringAttribute(key, value);
	 	 .
	 	 .
	 }
}

10

Example: Without DI

11

Example: With DI
public class DISample {
	 private CyAttribute attr;
 public DISample(CyAttribute attr) {
 this.attr = attr;
 }
	
	 public void doSomething(String key, String value) {
	 	 attr.setStringAttribute(key, value);
	 	 .
	 	 .
	 }
}

12

Example: With DI

13

Simplify DI

• But, we need to manage all construction
ourselves!

• This is complicated and redundant

➡We can use a framework to simplify this
problem

14

DI Frameworks

• Google Guice

• Apache iPOJO

• Seasar2

• PicoContainer

• Spring Framework

15

Class
CyAttributesImpl

Assembler

CyAttribute User
Class

• CyAttribute attr

Interface
CyAttributes

Inject

Configuration File

Create Instance

16

With DI Container

• Implementation is hidden from user object

• Implementations are replaceable

• Instances are managed by container

17

Class
IDDatabaseMySQL

Assembler

ID Database User
Class

• IDDatabase db

Interface
IDDatabase

Inject

Configuration File

Create Instance

Class
IDDatabaseDerby

Class
IDDatabasePostgreSQL

18

Applications
• Testing

• Unit testing

• Integration testing

✓Mock Object

• Reusable Software Components

• Re-wire components to build systems for
different environments

‣ This is why DI pattern is used in many
enterprise-level applications

19

20

Spring Framework

• The concept was introduced by Expert One-on-One
J2EE Design and Development (Rod Johnson)

• Light-weight container implementing Dependency
Injection pattern

• Goal: Building a framework for expandable,
maintainable large-scale applications without
complexity of Enterprise Java Beans

21

22

DI in Spring Framework

• Separating configuration from use

• Separate implementation from API

• Configuration of the system is stored
in XML files and annotation

• Components are called Beans

23

Example: Layout Manager

• Scenario

• Layout Manager has a collection of actual
layout algorithms

• Needs to provide list of currently
available layout algorithms to other part
of application

24

Layout Algorithm
Interface

public interface LayoutAlgorithm {

	 public String getName();

public void doLayout();

}

25

Layout Algorithm Beans
	 <bean name="gridLayout"

	 	 class="org.cytoscape.layout2.internal.algorithms.GridLayout">

	 	 <property name="name" value="grid" />

	 </bean>

	 <bean name="circularLayout"

	 	 class="org.cytoscape.layout2.internal.algorithms.CircularLayout">

	 	 <property name="name" value="circular" />

	 </bean>

	 <bean name="organicLayout"

	 	 class="org.cytoscape.layout2.internal.algorithms.OrganicLayout">

	 	 <property name="name" value="organic" />

	 </bean>

26

Layout Manager
Interface

public interface LayoutManager {

	 public List<LayoutAlgorithm> getLayouts();

}

27

Layout Manager Implementation

public class LayoutManagerImpl implements LayoutManager {

	 private List<LayoutAlgorithm> layouts;

	

	 public void setLayouts(List<LayoutAlgorithm> layouts) {

	 	 this.layouts = layouts;

	 }

	

	 public List<LayoutAlgorithm> getLayouts() {

	 	 return layouts;

	 }

}

28

Inject Layout Beans
	 <bean name="layoutManager"

	
	 class="org.cytoscape.layout2.internal.LayoutManagerImpl"

	 	 scope="singleton">

	 	 <property name="layouts">

	 	 	 <list>

	 	 	 	 <ref bean="gridLayout" />

	 	 	 	 <ref bean="circularLayout" />

	 	 	 	 <ref bean="organicLayout" />

	 	 	 </list>

	 	 </property>

	 </bean>

29

Class
CircularLayout

DI Container

Layout Manager

•Layout Algorithm 1
•Layout Algorithm 2
•Layout Algorithm 3
• .
• .

Class
GridLayout

Class
OrganicLayout

Create instances

Inject

Configuration File
(xml)

Interface
LayoutAlgorithm

30

Advantages

• Instances are managed by the container

• Code is cleaner than managing singletons in
each classes

• Components are wired through interfaces,
so swapping implementations is easy

• Properties of objects are stored in one
place

31

Problems

• Cytoscape 3 is an OSGi application

• OSGi bundles are dynamically loaded/
unloaded. How can Spring be aware those
dynamic state changes?

• Access to classes is now strictly controlled
by the OSGi platform. How can we share
beans (objects) between bundles?

32

Spring Dynamic
Modules for OSGi

(Spring DM)

33

Spring DM

• Extension for Spring Framework to use
beans in OSGi environment

• Apply Spring’s philosophy to OSGi world

• Keep as many objects as POJOs as
possible

• Make objects independent from OSGi
API

34

Review: OSGi Service

• In OSGi systems, objects shared by multiple
bundles are registered as OSGi service

• OSGi services are managed by service
registry

• Services are just Java interfaces

35

OSGi Service Usecase

1. Bundles with layout algorithms export
them as OSGi services

2. Cytoscape Desktop GUI accesses OSGi
service registry and import available layout
algorithms

3. Desktop creates menu items based on the
properties of each layout algorithms and
add them to the layout menu

36

OSGi Service
Registry

Bundle 1
Layout Algorithms

Bundle 2
Desktop GUI

Export Service Import Service

37

Spring DM

• Compose OSGi services as a collection of
beans

• Service dependency is managed
automatically

38

Spring DM Architecture

C

OSGi Services Defined as
a Complex of Beans

39

Example: OSGi Service
Based Layout Manager
• Layout algorithms are distributed in

different bundles

• Core layout algorithm bundle

• Commercial algorithms bundle

• User bundles with custom layout
algorithms

• Cytoscape Desktop GUI needs to create
structured menu for layout algorithms

40

Design

• One Layout Algorithm
 = One OSGi Service
 = One Spring Bean

• Desktop GUI generates menu based on
information provided from services

• Timing and dependency of the services are
controlled by Spring DM

41

Without Spring DM

• Each bundle needs to implement
BundleActivator and export each layout
algorithms in the activator’s start() method

• Desktop GUI uses ServiceTracker to locate
layout services in OSGi service registry

• Services will be created dynamically, so
timing is important and it should be
handled manually by Desktop GUI code

42

With Spring DM

• Define each layout algorithm as bean

• Export the bean as OSGi service

• Desktop GUI imports layout services as set
of beans

• Timing will be controlled automatically by
Spring DM

• No BundleActivator/ServiceTracker.
Objects are independent from OSGi API

43

Calling OSGi API
vs

Spring DM

44

Calling OSGi API

• Straightforward

• Everything is in Java code

• Coupling

➡ Once user classes call OSGi API, now
they are coupled with OSGi framework

45

Spring DM

• Everything is POJO

• No coupling between service objects and
OSGi / Spring API

• Instances are managed by container

• XML setting files and annotation

➡ Configuration and relationship
between classes are not in Java code

46

OSGi Best Practices
by Hargrave (IBM) and Kriens (aQute)

http://developers.sun.com/learning/javaoneonline/2007/pdf/TS-1419.pdf

Avoid OSGi Framework API Coupling

Use an OSGi-ready IoC container like Declarative
Services or Spring OSGi to express these

dependencies in a declarative form

Let the IoC containers handle all of the OSGi API calls

47

http://developers.sun.com/learning/javaoneonline/2007/pdf/TS-1419.pdf
http://developers.sun.com/learning/javaoneonline/2007/pdf/TS-1419.pdf

Demo: Command Layer
with Spring DM

48

Other Features

49

• Beans written in other programming
languages

• Aspect Oriented Programming (AOP)

• Logging

• Benchmarking

• Interoperability with other frameworks

• Web Service, Database Access, Web
Application

50

Writing Plugin in Other
Programming Languages

51

Implementing Cytoscape
Command in Ruby

• From 3.0, Cytoscape has an interface
Command

• In this example, implementing Cytoscpe
Command in scripting language (Ruby)

52

Command Interface

package org.cytoscape.command;

public interface Command {
	public String getName();
	public String getDescription();
	public void execute()
 throws Exception;

}

53

Inject Java Object to Ruby

	<bean name="networkAnalysisEngine"
		 class="org.cytoscape.analysis.NetworkStatisticsUtil">
	</bean>

	<lang:jruby id="rubyPluginBean"
		 script-source="META-INF/SampleRubyPlugin.rb"
		 script-interfaces="org.cytoscape.plugin.Command"
scope="singleton">
		 <lang:property name="name" value="Sample Ruby Plugin" />
		 <lang:property name="description"
		 	 value="Plugin written in ruby scripting language." />
	 <lang:property name="analysisEngine"
		 	 ref="networkAnalysisEngine" />
	</lang:jruby>

54

Plugin Code
Written in

Ruby

require 'java'
include_class 'org.cytoscape.command.Command'

class SampleRubyPlugin
 def setName(name)
 @@name = name
 end

 def setDescription(description)
 @@description = description
 end

 def setVerison(version)
 @@version = version
 end

 def setAnalysisEngine(analysisEngine)
 @@analysisEngine = analysisEngine
 end

 def getName
 @@name
 end

 def getDescription
 @@description
 end

 def execute
 @@analysisEngine.process(network)
 end

end

SampleRubyPlugin.new
55

Summary

• Dependency Injection pattern is useful for
applications with plugin architecture

• DI pattern makes application scalable

• Spring DM provides simpler way to manage
OSGi services

56

Thank You!

57

