

Example: Comparison of proteins of sequenced microbial genomes

- 570 microbial genomes sequenced (Jul. 07)
- 5 millions proteins
- Microbiogenomics project
 - Optimal extraction of relevant information from complex and heterogeneous data provided by exhaustive genomic comparisons
 - IGM+LRI/Univ. Paris-Sud, MIG/INRA
- Protein-Protein Network
 - Compute evolution distance
 - Cut above threshold (250 PAM units)
 - Cluster
 - Cut weak links (try to)
- Visualize!

Comparing the readability of the 2 representations

- The Tasks:
- Tasks related to the overview – Number of vertices
 - Number of arcs
- Tasks related to graph elements
 - Finding an element (a vertex, a link)
 Finding the most connected vertex (a)
 - Finding the most connected vertex (a central actor, a pivot, a hub)
 Finding a common neighbor
 - Finding a path
- Random graphs (3 sizes et 3 densities)
- 2 representations: Node-Link + Matrix
 Results:
- Node-link diagrams are preferable for small sparse graphs (20 vertices)
- Matrices are more readable wrt dense graphs and medium/large graphs (> 20 vertices) wrt the selected tasks, except paths

References:

Mohammad Ghoniem, Jean-Daniel Fekete and Philippe Castagliola Readability of Graphs Using Node-Link and Matrix-Based Representations: Controlled Experiment and Statistical Analysis, Information Visualization Journal, 4(2), Palgrave Macmillan, Summer 2005, pp. 114-135.

representations (Node-Link in blue, Matrix in red)

Results				
Dataset	Vertices	Edges	Load (sec)	Reorder (sec)
InfoVis04	1,000	1,000	10	10
Protein- Protein	30,000	1,000,000	20	20
Wikipedia FR	500,000	6,000,000	65	70

Conclusion

- Matrix representation is a powerful complement to NL
- Good for
 - Dense networks
 - Filtering and selection
- Once filtered and reduced, the network can be visualized with a NL
- Hybrid representations
 - improve understanding of matrices
 - combine the best of both worlds

Acknowledgements

Thanh-Nghi Do Niklas Elmqvist Howard Goodell Nathalie Henry